文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《余电上网/制氢方式下微电网系统全生命周期经济性评估》

本文主要是介绍文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《余电上网/制氢方式下微电网系统全生命周期经济性评估》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

该标题涉及到对微电网系统的全生命周期经济性进行评估,其重点关注两种运营方式:余电上网和制氢。以下是对标题的解读:

  1. 微电网系统: 微电网是指一种小规模的电力系统,通常包括分布式能源资源(如太阳能、风能、蓄电池等)以及能源管理系统,能够在本地区域内生成、分配和管理电力。

  2. 余电上网方式: 这可能指微电网系统中的一种运营模式,其中系统产生的额外电力(余电)被注入到公共电网中,可能以出售的形式供其他用户使用。这种方式通常考虑了微电网系统与电网的互联。

  3. 制氢方式: 另一种微电网系统的运营模式,可能是将余电用于水电解产生氢气。制氢可以作为一种能量存储手段,将电能转化为氢气,以后再利用氢气产生电力。

  4. 全生命周期经济性评估: 这表示对微电网系统从建设、运营到报废的整个生命周期进行经济性评估。这可能包括了投资成本、运营维护成本、能源产出收益、以及可能的环境影响等因素。全生命周期经济性评估有助于综合考虑系统在长期内的经济效益。

综合起来,该标题表明研究的重点是在微电网系统中,通过余电上网和制氢两种方式,对系统的整个生命周期进行经济性评估。这种评估可以为决策者提供关于微电网系统部署和运营的经济效益信息,有助于制定合理的能源管理和经济决策。

摘要:为全面评估微电网系统不同运营方式下的经济性,从全社会角度出发,综合分析余电上网和余电制氢2种运营方式下微电网系统的成本和效益。考虑到不同类型、不同容量的分布式电源对微网系统各方面性能的影响,首先对微电网中的分布式电源定容问题进行研究。在满足具体约束的前提下,以全生命周期综合收益最大为目标函数,建立微电网系统双层优化模型。该双层优化模型上层优化采用自适应粒子群算法求解系统最优配置,下层优化采用CPLEX求解器求解上层配置方案下的最优调度方案。在此基础上,运用所建全寿命周期经济性评估模型,对具体算例最优配置下各成本和收益以及自平衡率进行对比分析,并得出余电制氢计划这一运营方式更具经济性的结论。

这段摘要描述了一项研究,旨在评估微电网系统在不同运营方式下的经济性。下面是对摘要中内容的解读:

  1. 研究目的: 评估微电网系统中两种不同运营方式(余电上网和余电制氢)的经济效益。这种评估是从整个社会的角度出发,目的在于全面分析两种方式下微电网系统的成本和效益。

  2. 考虑因素: 考虑到不同类型和容量的分布式电源对微电网系统各方面性能的影响。这可能涉及到不同能源资源(如太阳能、风能等)的影响,以及它们在微网系统中的配置和管理。

  3. 定容问题: 首先研究了微电网系统中的分布式电源定容问题。这可能意味着确定在微电网系统中合适的电源容量和类型,以最大化系统效率和经济性。

  4. 建立双层优化模型: 为了实现全生命周期综合收益最大化,建立了微电网系统的双层优化模型。上层优化采用自适应粒子群算法来寻找系统最优配置,而下层优化则使用CPLEX求解器来解决上层配置下的最优调度方案。

  5. 全寿命周期经济性评估模型: 在最优配置的基础上,运用建立的全寿命周期经济性评估模型,对具体算例下最优配置的各种成本和收益以及自平衡率进行对比分析。

  6. 结论: 在对比分析后,得出了余电制氢计划作为一种运营方式更具经济性的结论。这表明在经过评估后,制氢方式可能在经济效益上更有优势。

总的来说,这项研究利用双层优化模型和全寿命周期经济性评估模型,从整体经济性角度探讨了微电网系统不同运营方式下的效益,并得出了在特定情况下制氢方式更具经济性的结论。

关键词:成本效益分析; 分布式电源容量配置:双层优化;自适应粒子群算法:余电制氢;
 

  1. 成本效益分析: 这是一种评估项目、计划或系统的经济性的方法。在这个上下文中,研究的焦点是微电网系统的两种运营方式(余电上网和余电制氢)的成本和效益。成本效益分析有助于确定特定决策或投资是否具有经济合理性,以及在经济层面上哪种选择更为优越。

  2. 分布式电源容量配置: 意味着确定微电网系统中分布式电源的合适容量和类型。这可能包括考虑不同能源来源(如太阳能、风能等)的影响,以及它们在系统中的配置。在这个上下文中,分布式电源容量配置可能是优化系统性能和经济性的一个关键因素。

  3. 双层优化: 这是一种优化问题的解决方法,其中问题被划分为两个层次。在这里,研究使用了双层优化模型,其中上层优化采用自适应粒子群算法来找到系统的最优配置,而下层优化使用CPLEX求解器来解决上层配置下的最优调度方案。这种层次化的方法通常用于处理复杂的优化问题。

  4. 自适应粒子群算法: 这是一种进化算法,用于解决优化问题。粒子群算法模拟鸟群或鱼群中个体的群体行为,通过在搜索空间中移动的粒子来表示潜在的解。自适应粒子群算法具有调整参数的能力,以更好地适应不同问题的特性,因此在寻找系统最优配置方面可能是一种有效的方法。

  5. 余电制氢: 这是一种运营方式,指的是在微电网系统中,当有多余的电力时将其用于制取氢气。这种方式可能在能源储存和后续利用方面具有优势,特别是考虑到氢气可以作为一种清洁能源进行存储和运输。

这些关键词的结合表明研究的主要内容是在微电网系统中,通过双层优化和自适应粒子群算法来进行成本效益分析,特别关注了两种运营方式下的分布式电源容量配置,以及余电制氢作为一种可能的经济运营方式。

仿真算例:本文以西南某地区微电网为分析对象,算例中 四季典型光伏和风电出力标幺值曲线以及该地区 负荷曲线如附录 A 图 A1 所示。微电网生命周期为 20 年,折现率为 8%,单位 DG 额定容量、电量分 别为 1kW、kW·h,各分布式电源所允许接入最大 容量均为 10MW,微电网与外部电网交互允许最大功率为 2MW,自平衡率限制在 80%以上。微电网 各设备对应的参数如附录 A 表 A1 所示[21-24],不同 发电类型产生的污染排放量及电力行业污染物环 境评价标准相关数据分别见附录 A 表 A2、A3[23,25]。

仿真程序复现思路:

要复现上述仿真,我们需要考虑以下步骤和思路,并提供一个简化的示例代码,以Python语言为例。

import numpy as np# 1. 定义光伏和风电出力标幺值曲线
solar_curve = np.array([0.2, 0.5, 0.8, 0.3, 0.1, 0.4, 0.7, 0.9, 0.6, 0.2, 0.1, 0.3])
wind_curve = np.array([0.3, 0.4, 0.6, 0.2, 0.1, 0.5, 0.7, 0.8, 0.4, 0.2, 0.1, 0.3])# 2. 定义负荷曲线
load_curve = np.array([0.8, 0.7, 0.6, 0.5, 0.4, 0.6, 0.7, 0.9, 1.0, 0.8, 0.7, 0.6])# 3. 初始化微电网参数
lifecycle = 20
discount_rate = 0.08
dg_capacity = 1
dg_energy = 1
max_capacity_per_source = 10
max_grid_interaction_power = 2
min_self_balance_rate = 0.8# 4. 初始化设备参数
# 在这里,你需要根据具体情况替换下面的数值,并定义其他设备的参数
generator_parameters = {'parameter1': value1,'parameter2': value2,# ...
}# 5. 粒子群算法的实现
def particle_swarm_optimization(num_particles=10, max_iterations=100, inertia=0.7, c1=1.5, c2=1.5):dimensions = len(generator_parameters)  # 粒子的维度,即变量的数量particles = np.random.rand(num_particles, dimensions)  # 随机初始化粒子群# 初始化粒子的速度velocities = np.zeros((num_particles, dimensions))# 初始化全局最优解global_best_solution = Noneglobal_best_fitness = float('inf')for iteration in range(max_iterations):for i in range(num_particles):# 计算当前粒子的适应度值current_fitness = fitness_function(particles[i])# 更新个体最优解if current_fitness < fitness_function(global_best_solution):global_best_solution = particles[i].copy()# 更新全局最优解if current_fitness < global_best_fitness:global_best_fitness = current_fitness# 更新粒子的速度和位置velocities[i] = inertia * velocities[i] + c1 * np.random.rand() * (global_best_solution - particles[i]) + c2 * np.random.rand() * (global_best_solution - particles[i])particles[i] = particles[i] + velocities[i]return global_best_solution# 6. 定义适应度函数
def fitness_function(solution):# 在这里计算适应度,可以是成本、效益等的函数# 使用上述定义的各种数据和参数# 返回适应度值pass# 7. 运行粒子群算法进行微电网系统优化
optimized_solution = particle_swarm_optimization()# 输出优化结果
print("Optimized Solution:", optimized_solution)

请注意,这只是一个简化的例子,真实的微电网仿真程序可能需要更多的考虑和更复杂的模型。适应度函数的设计取决于你的优化目标,可能需要考虑微电网的经济性、可靠性等因素。在实际应用中,你可能还需要考虑更多的约束条件和问题特定的参数。

这篇关于文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《余电上网/制氢方式下微电网系统全生命周期经济性评估》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452624

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同