【FPGA】Verilog:二进制并行加法器 | 超前进位 | 实现 4 位二进制并行加法器和减法器 | MSI/LSI 运算电路

本文主要是介绍【FPGA】Verilog:二进制并行加法器 | 超前进位 | 实现 4 位二进制并行加法器和减法器 | MSI/LSI 运算电路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


Ⅰ. 前置知识

0x00 并行加法器和减法器

如果我们要对 4 位加法器和减法器进行关于二进制并行运算功能,可以通过将加法器和减法器以 N 个并行连接的方式,创建一个执行 N 位加法和减法运算的电路。

4 位二进制并行加法器

4 位二进制并行减法器

换句话说,4 位二进制并行加法器可以执行两个 4 位二进制数之间的加法运算,而 4 位二进制并行减法器可以执行两个 4 位二进制数之间的减法运算。如上图所示,4 位二进制并行加法器由四个并联的 1 位全加法器组成,而 4 位二进制并行减法器由四个并联的 1 位全减法器组成。

计算方法如下:

被加数和加数的各位能同时并行到达各位的输入端,而各位全加器的进位输入则是按照由低位向高位逐级串行传递的,各进位形成一个进位链。由于每一位相加的和都与本位进位输入有关,所以,最高位必须等到各低位全部相加完成并送来进位信号之后才能产生运算结果。显然,这种加法器运算速度较慢,而且位数越多,速度就越低。为了提高加法器的运算速度,必须设法减小或去除由于进位信号逐级传送所花的时间,使各位的进位直接由加数和被加数来决定,而不需依赖低位进位。根据这一思想设计的加法器称为超前进位(又称先行进位)二进制并行加法器。

0x01 超前进位(Look ahead carry)

超前进位是一种用于减少纹波进位链电路运算延迟的运算方法。在多位的加法运算中,原本是将进位转移到下一位的加法运算中,并按顺序进行计算,但通过求解所有位的进位表达式并进行计算,就可以一次性计算出每一位的进位,而无需转移前一位的进位,从而减少了门通过的延迟。下图显示了使用超前进位法计算 4 位加法运算的进位。

Look Ahead Carry (4bit Adder)

4bit Look-ahead Adder

Ⅱ. 实现 4 位二进制并行加法器

0x00 实现要求

解释 4 位二进制并行加法器的结果和仿真过程

0x01 代码和仿真代码

💬 Design source:

`timescale 1ns / 1psmodule BPA(input Cin,input A0,input A1,input A2,input A3,input B0,input B1,input B2,input B3,output C1,output C2,output C3,output C4,output S0,output S1,output S2,output S3);assign S0 = (A0^B0)^Cin;
assign C1 = (Cin&(A0^B0)) | (A0&B0);assign S1 = (A1^B1)^C1;
assign C2 = (C1&(A1^B1)) | (A1&B1);assign S2 = (A2^B2)^C2;
assign C3 = (C2&(A2^B2)) | (A2&B2);assign S3 = (A3^B3)^C3;
assign C4 = (C3&(A3^B3)) | (A3&B3);endmodule

💬 Testbench:

`timescale 1ns / 1psmodule BPA_tb;
reg Cin,A0,A1,A2,A3,B0,B1,B2,B3;
wire C1,C2,C3,C4,S0,S1,S2,S3;BPA u_BPA (.Cin(Cin ),.A0(A0 ),.A1(A1 ),.A2(A2 ),.A3(A3 ),.B0(B0 ),.B1(B1 ),.B2(B2 ),.B3(B3 ),.C1(C1 ),.C2(C2 ),.C3(C3 ),.C4(C4 ),.S0(S0 ),.S1(S1 ),.S2(S2 ),.S3(S3 )
);initial beginCin = 1'b0;A0 = 1'b0;A1 = 1'b0;A2 = 1'b0;A3 = 1'b0;B0 = 1'b0;B1 = 1'b0;B2 = 1'b0;B3 = 1'b0;
endalways@(Cin or A0 or A1 or A2 or A3 or B0 or B1 or B2 or B3) beginCin <= #10 ~Cin;A0 <= #20 ~A0;A1 <= #40 ~A1;A2 <= #80 ~A2;A3 <= #160 ~A3;B0 <= #320 ~B0;B1 <= #640 ~B1;B2 <= #1280 ~B2;B3 <= #2560 ~B3;
endinitial begin#5120$finish;
endendmodule

0x02 仿真结果

0x03 Schematic 图

📜 Schematic:

4 位二进制并行加法器是四个并行的 1 位全加法器,这意味着对每个位数执行一次加法器运算,然后将得到的和值传递给结果,并将进位值传递给下一位数加法器的进位。

Ⅲ. 实现 4 位二进制并行减法器

0x00 实现要求

解释 4 位二进制并行减法器的结果和仿真过程。

0x01 代码和仿真代码

💬 Design source:

`timescale 1ns / 1psmodule BPS(input bin,input A0,input A1,input A2,input A3,input B0,input B1,input B2,input B3,output b1,output b2,output b3,output b4,output D0,output D1,output D2,output D3);assign D0 = (A0^B0)^bin;
assign b1 = ((~(A0^B0))&bin) | ((~A0)&B0);assign D1 = (A1^B1)^b1;
assign b2 = ((~(A1^B1))&b1) | ((~A1)&B1);assign D2 = (A2^B2)^b2;
assign b3 = ((~(A2^B2))&b2) | ((~A2)&B2);assign D3 = (A3^B3)^b3;
assign b4 = ((~(A3^B3))&b3) | ((~A3)&B3);endmodule

💬 Testbench:

`timescale 1ns / 1psmodule BPS_tb;
reg bin,A0,A1,A2,A3,B0,B1,B2,B3;
wire b1,b2,b3,b4,D0,D1,D2,D3;BPS u_BPS (.A0(A0 ),.A1(A1 ),.A2(A2 ),.A3(A3 ),.B0(B0 ),.B1(B1 ),.B2(B2 ),.B3(B3 ),.bin(bin ),.b1(b1 ),.b2(b2 ),.b3(b3 ),.b4(b4 ),.D0(D0 ),.D1(D1 ),.D2(D2 ),.D3(D3 )
);initial beginbin = 1'b0;A0 = 1'b0;A1 = 1'b0;A2 = 1'b0;A3 = 1'b0;B0 = 1'b0;B1 = 1'b0;B2 = 1'b0;B3 = 1'b0;
endalways@(bin or A0 or A1 or A2 or A3 or B0 or B1 or B2 or B3) beginbin = #10 ~bin;A0 <= #20 ~A0;A1 <= #40 ~A1;A2 <= #80 ~A2;A3 <= #160 ~A3;B0 <= #320 ~B0;B1 <= #640 ~B1;B2 <= #1280 ~B2;B3 <= #2560 ~B3;
endinitial begin#5120$finish;
endendmodule

0x02 仿真结果

🚩 运行结果如下:

0x03 Schematic 图 

📜 Schematic:

4 位二进制并行减法器是四个并行的 1 位全减法器,这意味着对每个位数执行一次减法器运算,然后将所得差值传递给结果,并将借出值传递给下一个位数减法器的借入值。

📌 [ 笔者 ]   floyd
📃 [ 更新 ]   2023.12.3
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,本人也很想知道这些错误,恳望读者批评指正!

📜 参考资料 

Introduction to Logic and Computer Design, Alan Marcovitz, McGrawHill, 2008

Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

百度百科[EB/OL]. []. https://baike.baidu.com/.

这篇关于【FPGA】Verilog:二进制并行加法器 | 超前进位 | 实现 4 位二进制并行加法器和减法器 | MSI/LSI 运算电路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452468

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现