【FPGA】Verilog:二进制并行加法器 | 超前进位 | 实现 4 位二进制并行加法器和减法器 | MSI/LSI 运算电路

本文主要是介绍【FPGA】Verilog:二进制并行加法器 | 超前进位 | 实现 4 位二进制并行加法器和减法器 | MSI/LSI 运算电路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


Ⅰ. 前置知识

0x00 并行加法器和减法器

如果我们要对 4 位加法器和减法器进行关于二进制并行运算功能,可以通过将加法器和减法器以 N 个并行连接的方式,创建一个执行 N 位加法和减法运算的电路。

4 位二进制并行加法器

4 位二进制并行减法器

换句话说,4 位二进制并行加法器可以执行两个 4 位二进制数之间的加法运算,而 4 位二进制并行减法器可以执行两个 4 位二进制数之间的减法运算。如上图所示,4 位二进制并行加法器由四个并联的 1 位全加法器组成,而 4 位二进制并行减法器由四个并联的 1 位全减法器组成。

计算方法如下:

被加数和加数的各位能同时并行到达各位的输入端,而各位全加器的进位输入则是按照由低位向高位逐级串行传递的,各进位形成一个进位链。由于每一位相加的和都与本位进位输入有关,所以,最高位必须等到各低位全部相加完成并送来进位信号之后才能产生运算结果。显然,这种加法器运算速度较慢,而且位数越多,速度就越低。为了提高加法器的运算速度,必须设法减小或去除由于进位信号逐级传送所花的时间,使各位的进位直接由加数和被加数来决定,而不需依赖低位进位。根据这一思想设计的加法器称为超前进位(又称先行进位)二进制并行加法器。

0x01 超前进位(Look ahead carry)

超前进位是一种用于减少纹波进位链电路运算延迟的运算方法。在多位的加法运算中,原本是将进位转移到下一位的加法运算中,并按顺序进行计算,但通过求解所有位的进位表达式并进行计算,就可以一次性计算出每一位的进位,而无需转移前一位的进位,从而减少了门通过的延迟。下图显示了使用超前进位法计算 4 位加法运算的进位。

Look Ahead Carry (4bit Adder)

4bit Look-ahead Adder

Ⅱ. 实现 4 位二进制并行加法器

0x00 实现要求

解释 4 位二进制并行加法器的结果和仿真过程

0x01 代码和仿真代码

💬 Design source:

`timescale 1ns / 1psmodule BPA(input Cin,input A0,input A1,input A2,input A3,input B0,input B1,input B2,input B3,output C1,output C2,output C3,output C4,output S0,output S1,output S2,output S3);assign S0 = (A0^B0)^Cin;
assign C1 = (Cin&(A0^B0)) | (A0&B0);assign S1 = (A1^B1)^C1;
assign C2 = (C1&(A1^B1)) | (A1&B1);assign S2 = (A2^B2)^C2;
assign C3 = (C2&(A2^B2)) | (A2&B2);assign S3 = (A3^B3)^C3;
assign C4 = (C3&(A3^B3)) | (A3&B3);endmodule

💬 Testbench:

`timescale 1ns / 1psmodule BPA_tb;
reg Cin,A0,A1,A2,A3,B0,B1,B2,B3;
wire C1,C2,C3,C4,S0,S1,S2,S3;BPA u_BPA (.Cin(Cin ),.A0(A0 ),.A1(A1 ),.A2(A2 ),.A3(A3 ),.B0(B0 ),.B1(B1 ),.B2(B2 ),.B3(B3 ),.C1(C1 ),.C2(C2 ),.C3(C3 ),.C4(C4 ),.S0(S0 ),.S1(S1 ),.S2(S2 ),.S3(S3 )
);initial beginCin = 1'b0;A0 = 1'b0;A1 = 1'b0;A2 = 1'b0;A3 = 1'b0;B0 = 1'b0;B1 = 1'b0;B2 = 1'b0;B3 = 1'b0;
endalways@(Cin or A0 or A1 or A2 or A3 or B0 or B1 or B2 or B3) beginCin <= #10 ~Cin;A0 <= #20 ~A0;A1 <= #40 ~A1;A2 <= #80 ~A2;A3 <= #160 ~A3;B0 <= #320 ~B0;B1 <= #640 ~B1;B2 <= #1280 ~B2;B3 <= #2560 ~B3;
endinitial begin#5120$finish;
endendmodule

0x02 仿真结果

0x03 Schematic 图

📜 Schematic:

4 位二进制并行加法器是四个并行的 1 位全加法器,这意味着对每个位数执行一次加法器运算,然后将得到的和值传递给结果,并将进位值传递给下一位数加法器的进位。

Ⅲ. 实现 4 位二进制并行减法器

0x00 实现要求

解释 4 位二进制并行减法器的结果和仿真过程。

0x01 代码和仿真代码

💬 Design source:

`timescale 1ns / 1psmodule BPS(input bin,input A0,input A1,input A2,input A3,input B0,input B1,input B2,input B3,output b1,output b2,output b3,output b4,output D0,output D1,output D2,output D3);assign D0 = (A0^B0)^bin;
assign b1 = ((~(A0^B0))&bin) | ((~A0)&B0);assign D1 = (A1^B1)^b1;
assign b2 = ((~(A1^B1))&b1) | ((~A1)&B1);assign D2 = (A2^B2)^b2;
assign b3 = ((~(A2^B2))&b2) | ((~A2)&B2);assign D3 = (A3^B3)^b3;
assign b4 = ((~(A3^B3))&b3) | ((~A3)&B3);endmodule

💬 Testbench:

`timescale 1ns / 1psmodule BPS_tb;
reg bin,A0,A1,A2,A3,B0,B1,B2,B3;
wire b1,b2,b3,b4,D0,D1,D2,D3;BPS u_BPS (.A0(A0 ),.A1(A1 ),.A2(A2 ),.A3(A3 ),.B0(B0 ),.B1(B1 ),.B2(B2 ),.B3(B3 ),.bin(bin ),.b1(b1 ),.b2(b2 ),.b3(b3 ),.b4(b4 ),.D0(D0 ),.D1(D1 ),.D2(D2 ),.D3(D3 )
);initial beginbin = 1'b0;A0 = 1'b0;A1 = 1'b0;A2 = 1'b0;A3 = 1'b0;B0 = 1'b0;B1 = 1'b0;B2 = 1'b0;B3 = 1'b0;
endalways@(bin or A0 or A1 or A2 or A3 or B0 or B1 or B2 or B3) beginbin = #10 ~bin;A0 <= #20 ~A0;A1 <= #40 ~A1;A2 <= #80 ~A2;A3 <= #160 ~A3;B0 <= #320 ~B0;B1 <= #640 ~B1;B2 <= #1280 ~B2;B3 <= #2560 ~B3;
endinitial begin#5120$finish;
endendmodule

0x02 仿真结果

🚩 运行结果如下:

0x03 Schematic 图 

📜 Schematic:

4 位二进制并行减法器是四个并行的 1 位全减法器,这意味着对每个位数执行一次减法器运算,然后将所得差值传递给结果,并将借出值传递给下一个位数减法器的借入值。

📌 [ 笔者 ]   floyd
📃 [ 更新 ]   2023.12.3
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,本人也很想知道这些错误,恳望读者批评指正!

📜 参考资料 

Introduction to Logic and Computer Design, Alan Marcovitz, McGrawHill, 2008

Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

百度百科[EB/OL]. []. https://baike.baidu.com/.

这篇关于【FPGA】Verilog:二进制并行加法器 | 超前进位 | 实现 4 位二进制并行加法器和减法器 | MSI/LSI 运算电路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452468

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如