目标检测算法改进系列之添加变核卷积AKConv模块

2023-12-04 02:44

本文主要是介绍目标检测算法改进系列之添加变核卷积AKConv模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AKConv变核卷积

KConv的主要思想:AKConv(可变核卷积)主要提供一种灵活的卷积机制,允许卷积核具有任意数量的参数和采样形状。这种方法突破了传统卷积局限于固定局部窗口和固定采样形状的限制,从而使得卷积操作能够更加精准地适应不同数据集和不同位置的目标。
AKConv的改进点:
(1)灵活的卷积核设计:AKConv允许卷积核具有任意数量的参数,这使得其可以根据实际需求调整大小和形状,从而更有效地适应目标的变化。
(2)初始采样坐标算法:针对不同大小的卷积核,AKConv提出了一种新的算法来生成初始采样坐标,这进一步增强了其在处理各种尺寸目标时的灵活性。
(3)适应性采样位置调整:为适应目标的不同变化,AKConv通过获得的偏移量调整不规则卷积核的采样位置,从而提高了特征提取的准确性。
(4)减少模型参数和计算开销:AKConv支持线性增减卷积参数的数量,有助于在硬件环境中优化性能,尤其适合于轻量级模型的应用。

原文地址:AKConv: Convolutional Kernel with Arbitrary Sampled Shapes and Arbitrary Number of Parameters

AKConv结构图

改进实现过程

AKConv定义

import torch.nn as nn
import torch
from einops import rearrange
import mathclass AKConv(nn.Module):def __init__(self, inc, outc, num_param, stride=1, bias=None):super(AKConv, self).__init__()self.num_param = num_paramself.stride = strideself.conv = nn.Sequential(nn.Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias),nn.BatchNorm2d(outc),nn.SiLU())  # the conv adds the BN and SiLU to compare original Conv in YOLOv5.self.p_conv = nn.Conv2d(inc, 2 * num_param, kernel_size=3, padding=1, stride=stride)nn.init.constant_(self.p_conv.weight, 0)self.p_conv.register_full_backward_hook(self._set_lr)@staticmethoddef _set_lr(module, grad_input, grad_output):grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))def forward(self, x):# N is num_param.offset = self.p_conv(x)dtype = offset.data.type()N = offset.size(1) // 2# (b, 2N, h, w)p = self._get_p(offset, dtype)# (b, h, w, 2N)p = p.contiguous().permute(0, 2, 3, 1)q_lt = p.detach().floor()q_rb = q_lt + 1q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2) - 1), torch.clamp(q_lt[..., N:], 0, x.size(3) - 1)],dim=-1).long()q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2) - 1), torch.clamp(q_rb[..., N:], 0, x.size(3) - 1)],dim=-1).long()q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)# clip pp = torch.cat([torch.clamp(p[..., :N], 0, x.size(2) - 1), torch.clamp(p[..., N:], 0, x.size(3) - 1)], dim=-1)# bilinear kernel (b, h, w, N)g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))# resampling the features based on the modified coordinates.x_q_lt = self._get_x_q(x, q_lt, N)x_q_rb = self._get_x_q(x, q_rb, N)x_q_lb = self._get_x_q(x, q_lb, N)x_q_rt = self._get_x_q(x, q_rt, N)# bilinearx_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \g_rb.unsqueeze(dim=1) * x_q_rb + \g_lb.unsqueeze(dim=1) * x_q_lb + \g_rt.unsqueeze(dim=1) * x_q_rtx_offset = self._reshape_x_offset(x_offset, self.num_param)out = self.conv(x_offset)return out# generating the inital sampled shapes for the AKConv with different sizes.def _get_p_n(self, N, dtype):base_int = round(math.sqrt(self.num_param))row_number = self.num_param // base_intmod_number = self.num_param % base_intp_n_x, p_n_y = torch.meshgrid(torch.arange(0, row_number),torch.arange(0, base_int), indexing='xy')p_n_x = torch.flatten(p_n_x)p_n_y = torch.flatten(p_n_y)if mod_number > 0:mod_p_n_x, mod_p_n_y = torch.meshgrid(torch.arange(row_number, row_number + 1),torch.arange(0, mod_number),indexing='xy')mod_p_n_x = torch.flatten(mod_p_n_x)mod_p_n_y = torch.flatten(mod_p_n_y)p_n_x, p_n_y = torch.cat((p_n_x, mod_p_n_x)), torch.cat((p_n_y, mod_p_n_y))p_n = torch.cat([p_n_x, p_n_y], 0)p_n = p_n.view(1, 2 * N, 1, 1).type(dtype)return p_n# no zero-paddingdef _get_p_0(self, h, w, N, dtype):p_0_x, p_0_y = torch.meshgrid(torch.arange(0, h * self.stride, self.stride),torch.arange(0, w * self.stride, self.stride),indexing='xy')p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)return p_0def _get_p(self, offset, dtype):N, h, w = offset.size(1) // 2, offset.size(2), offset.size(3)# (1, 2N, 1, 1)p_n = self._get_p_n(N, dtype)# (1, 2N, h, w)p_0 = self._get_p_0(h, w, N, dtype)p = p_0 + p_n + offsetreturn pdef _get_x_q(self, x, q, N):b, h, w, _ = q.size()padded_w = x.size(3)c = x.size(1)# (b, c, h*w)x = x.contiguous().view(b, c, -1)# (b, h, w, N)index = q[..., :N] * padded_w + q[..., N:]  # offset_x*w + offset_y# (b, c, h*w*N)index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)# 根据实际情况调整index = index.clamp(min=0, max=x.shape[-1] - 1)x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)return x_offset#  Stacking resampled features in the row direction.@staticmethoddef _reshape_x_offset(x_offset, num_param):b, c, h, w, n = x_offset.size()# using Conv3d# x_offset = x_offset.permute(0,1,4,2,3), then Conv3d(c,c_out, kernel_size =(num_param,1,1),stride=(num_param,1,1),bias= False)# using 1 × 1 Conv# x_offset = x_offset.permute(0,1,4,2,3), then, x_offset.view(b,c×num_param,h,w)  finally, Conv2d(c×num_param,c_out, kernel_size =1,stride=1,bias= False)# using the column conv as follow, then, Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias)x_offset = rearrange(x_offset, 'b c h w n -> b c (h n) w')return x_offset

添加过程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章,里面详细的介绍了其他卷积模块的添加方法,可以参考一下,大致都是添加到C2f、Bottleneck、Ncek、DetectHead部分。
目标检测算法改进系列之添加SCConv空间和通道重构卷积

配置文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, AKConv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, AKConv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, AKConv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, AKConv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, AKConv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, AKConv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

这篇关于目标检测算法改进系列之添加变核卷积AKConv模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451817

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形