C#,数值计算——插值和外推,三次样条插值(Spline_interp)的计算方法与源程序

本文主要是介绍C#,数值计算——插值和外推,三次样条插值(Spline_interp)的计算方法与源程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 文本格式

using System;

namespace Legalsoft.Truffer
{
    /// <summary>
    /// 三次样条插值
    /// Cubic Spline Interpolation
    /// Cubic spline interpolation object. Construct with x and y vectors, and
    /// (optionally) values of the first derivative at the endpoints, then call
    /// interp for interpolated values
    /// </summary>
    public class Spline_interp : Base_interp
    {
        private double[] y2 { get; set; }

        public Spline_interp(double[] xv, double[] yv, double yp1 = 1.0e99, double ypn = 1.0e99) : base(xv, yv[0], 2)
        {
            this.y2 = new double[xv.Length];
            sety2(xv, yv, yp1, ypn);
        }

        public Spline_interp(double[] xv, double yv, double yp1 = 1.0e99, double ypn = 1.0e99) : base(xv, yv, 2)
        {
            this.y2 = new double[xv.Length];
            sety2(xv, y2, yp1, ypn);
        }

        /// <summary>
        /// This routine stores an array y2[0..n - 1] with second derivatives of the
        /// interpolating function at the tabulated points pointed to by xv, using
        /// function values pointed to by yv.If yp1 and/or ypn are equal to 1.0E99 or
        /// larger, the routine is signaled to set the corresponding boundary condition
        /// for a natural spline, with zero second derivative on that boundary;
        /// otherwise, they are the values of the first derivatives at the endpoints.
        /// </summary>
        /// <param name="xv"></param>
        /// <param name="yv"></param>
        /// <param name="yp1"></param>
        /// <param name="ypn"></param>
        public void sety2(double[] xv, double[] yv, double yp1, double ypn)
        {
            double[] u = new double[n - 1];
            if (yp1 > 0.99e99)
            {
                y2[0] = u[0] = 0.0;
            }
            else
            {
                y2[0] = -0.5;
                u[0] = (3.0 / (xv[1] - xv[0])) * ((yv[1] - yv[0]) / (xv[1] - xv[0]) - yp1);
            }
            for (int i = 1; i < n - 1; i++)
            {
                double sig = (xv[i] - xv[i - 1]) / (xv[i + 1] - xv[i - 1]);
                double p = sig * y2[i - 1] + 2.0;
                y2[i] = (sig - 1.0) / p;
                u[i] = (yv[i + 1] - yv[i]) / (xv[i + 1] - xv[i]) - (yv[i] - yv[i - 1]) / (xv[i] - xv[i - 1]);
                u[i] = (6.0 * u[i] / (xv[i + 1] - xv[i - 1]) - sig * u[i - 1]) / p;
            }
            double qn;
            double un;
            if (ypn > 0.99e99)
            {
                qn = un = 0.0;
            }
            else
            {
                qn = 0.5;
                un = (3.0 / (xv[n - 1] - xv[n - 2])) * (ypn - (yv[n - 1] - yv[n - 2]) / (xv[n - 1] - xv[n - 2]));
            }
            y2[n - 1] = (un - qn * u[n - 2]) / (qn * y2[n - 2] + 1.0);
            for (int k = n - 2; k >= 0; k--)
            {
                y2[k] = y2[k] * y2[k + 1] + u[k];
            }
        }

        /// <summary>
        /// Given a value x, and using pointers to data xx and yy, this routine returns
        /// an interpolated value y, and stores an error estimate dy. The returned
        /// value is obtained by mm-point polynomial interpolation on the subrange
        /// xx[jl..jl + mm - 1].
        /// </summary>
        /// <param name="jl"></param>
        /// <param name="x"></param>
        /// <returns></returns>
        /// <exception cref="Exception"></exception>
        public override double rawinterp(int jl, double x)
        {
            int klo = jl;
            int khi = jl + 1;
            double h = xx[khi] - xx[klo];
            //if (h == 0.0)
            if (Math.Abs(h) <= float.Epsilon)
            {
                throw new Exception("Bad input to routine splint");
            }
            double a = (xx[khi] - x) / h;
            double b = (x - xx[klo]) / h;
            double y = a * yy[klo] + b * yy[khi] + ((a * a * a - a) * y2[klo] + (b * b * b - b) * y2[khi]) * (h * h) / 6.0;
            return y;
        }
    }
}
 

2 代码格式

using System;namespace Legalsoft.Truffer
{/// <summary>/// 三次样条插值/// Cubic Spline Interpolation/// Cubic spline interpolation object. Construct with x and y vectors, and/// (optionally) values of the first derivative at the endpoints, then call/// interp for interpolated values/// </summary>public class Spline_interp : Base_interp{private double[] y2 { get; set; }public Spline_interp(double[] xv, double[] yv, double yp1 = 1.0e99, double ypn = 1.0e99) : base(xv, yv[0], 2){this.y2 = new double[xv.Length];sety2(xv, yv, yp1, ypn);}public Spline_interp(double[] xv, double yv, double yp1 = 1.0e99, double ypn = 1.0e99) : base(xv, yv, 2){this.y2 = new double[xv.Length];sety2(xv, y2, yp1, ypn);}/// <summary>/// This routine stores an array y2[0..n - 1] with second derivatives of the/// interpolating function at the tabulated points pointed to by xv, using/// function values pointed to by yv.If yp1 and/or ypn are equal to 1.0E99 or/// larger, the routine is signaled to set the corresponding boundary condition/// for a natural spline, with zero second derivative on that boundary;/// otherwise, they are the values of the first derivatives at the endpoints./// </summary>/// <param name="xv"></param>/// <param name="yv"></param>/// <param name="yp1"></param>/// <param name="ypn"></param>public void sety2(double[] xv, double[] yv, double yp1, double ypn){double[] u = new double[n - 1];if (yp1 > 0.99e99){y2[0] = u[0] = 0.0;}else{y2[0] = -0.5;u[0] = (3.0 / (xv[1] - xv[0])) * ((yv[1] - yv[0]) / (xv[1] - xv[0]) - yp1);}for (int i = 1; i < n - 1; i++){double sig = (xv[i] - xv[i - 1]) / (xv[i + 1] - xv[i - 1]);double p = sig * y2[i - 1] + 2.0;y2[i] = (sig - 1.0) / p;u[i] = (yv[i + 1] - yv[i]) / (xv[i + 1] - xv[i]) - (yv[i] - yv[i - 1]) / (xv[i] - xv[i - 1]);u[i] = (6.0 * u[i] / (xv[i + 1] - xv[i - 1]) - sig * u[i - 1]) / p;}double qn;double un;if (ypn > 0.99e99){qn = un = 0.0;}else{qn = 0.5;un = (3.0 / (xv[n - 1] - xv[n - 2])) * (ypn - (yv[n - 1] - yv[n - 2]) / (xv[n - 1] - xv[n - 2]));}y2[n - 1] = (un - qn * u[n - 2]) / (qn * y2[n - 2] + 1.0);for (int k = n - 2; k >= 0; k--){y2[k] = y2[k] * y2[k + 1] + u[k];}}/// <summary>/// Given a value x, and using pointers to data xx and yy, this routine returns/// an interpolated value y, and stores an error estimate dy. The returned/// value is obtained by mm-point polynomial interpolation on the subrange/// xx[jl..jl + mm - 1]./// </summary>/// <param name="jl"></param>/// <param name="x"></param>/// <returns></returns>/// <exception cref="Exception"></exception>public override double rawinterp(int jl, double x){int klo = jl;int khi = jl + 1;double h = xx[khi] - xx[klo];//if (h == 0.0)if (Math.Abs(h) <= float.Epsilon){throw new Exception("Bad input to routine splint");}double a = (xx[khi] - x) / h;double b = (x - xx[klo]) / h;double y = a * yy[klo] + b * yy[khi] + ((a * a * a - a) * y2[klo] + (b * b * b - b) * y2[khi]) * (h * h) / 6.0;return y;}}
}

这篇关于C#,数值计算——插值和外推,三次样条插值(Spline_interp)的计算方法与源程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/448923

相关文章

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

C#中的 StreamReader/StreamWriter 使用示例详解

《C#中的StreamReader/StreamWriter使用示例详解》在C#开发中,StreamReader和StreamWriter是处理文本文件的核心类,属于System.IO命名空间,本... 目录前言一、什么是 StreamReader 和 StreamWriter?1. 定义2. 特点3. 用

如何使用C#串口通讯实现数据的发送和接收

《如何使用C#串口通讯实现数据的发送和接收》本文详细介绍了如何使用C#实现基于串口通讯的数据发送和接收,通过SerialPort类,我们可以轻松实现串口通讯,并结合事件机制实现数据的传递和处理,感兴趣... 目录1. 概述2. 关键技术点2.1 SerialPort类2.2 异步接收数据2.3 数据解析2.