独立成分分析ICA系列5:信息极大化的 ICA 算法

2023-12-02 12:18

本文主要是介绍独立成分分析ICA系列5:信息极大化的 ICA 算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.ICA基本理论再综述

在实际应用中,可以通过传感器得到一系列观测信号,这些观测信号是由未知源信号经过某种混合系统的输出,如在移动通信中,源信号经过发射机天线发出后,在无线信道中经过不确定的混合和干扰,以至于到达接收机的信号是一个多径、携噪的混合信号,而从混合信号中分离出发射端的源信号将大大改善通信质量,因此类似的问题都可以用 ICA的方法来解决。

假设由 N 个源信号 构成一个列向量由 M 个观测信号构成一个列向量A 是一个 N*M 维混合矩阵,满足下列方程:

 注意看!观测信号一定要大于等于源信号,否则这个问题是无解的!!!

ICA 的思路是找到一个 N*M 维反混合矩阵W满足:Y=WX=WAS;Y是我们求解后的成分信号,S是源信号,若要使Y最大程度上逼近S,这实际上就是个优化过程,只需要满足解混合矩阵W最佳估计A的逆矩阵就好! 

2.信息极大化算法原理

信息极大化原则(Infomax,  Information   Maximization)可描述为:系统的输出端信息达到最大时,等价于各输出分量之间的互信息达到最小,则此时各输出分量间的冗余信息得到去除。依据该原则对输出向量建立一个目标函数,这里选择输出向量的熵作为目标函数,熵可以用来度量一个随机量的无序性,如果输出向量的各分量统计独立性越高则相应的熵便越大,所以只需求得使目标函数达到最大时的分离矩阵便可得到输入端向量的最佳估计。

注:Y=WX

注:Z=g(Y)

注:△W是微分收敛逼近思想

3.Infomax算法步骤


4.Infomax算法在语音上的应用

4.1语音增强与消噪

语音信号在传输的过程中不可避免地会受到周围噪音的干扰,这些干扰使最终接收到的语音并非纯净语音,而是携噪语音,很多情况下噪声的功率远远大于语音信号的功率,以致于弱的目标语音信息被很强的干扰噪声所湮没。普通的滤波技术很难解决这个问题,而ICA算法则可以实现。语音中的噪声一般为加性噪声,而且噪声的产生独立于语音的产生,如果将语音和噪声分别看作是由两个独立的信号源产生,然后线性地叠加成携噪语音,则完全可以应用ICA方法分离出语音和噪声,从而达到语音增强和消噪的目的。

4.2助听器功能的改善

对于听力障碍者来说,助听器性能的优劣至关重要。传统的助听器仅具有单纯的放大功能和简单的语音滤波功能,在噪声环境中,将所有接收到的信号一同放大,在有两个或两个以上的说话者存在的条件下,有听力障碍的人往往很烦躁,很难把注意力集中到某个人的讲话内容上,因为多个话音信号的频谱特征很接近,滤波器无法将其他的话音信号滤掉,导致助听器的功能下降。此时可以利用ICA分离技术选择出特定的源信号,使得人们可以清楚地听到想要与之交流的说话人的声音,而不会受到其他外来话音的干扰。因此将ICA分离技术应用到助听器中,将大大提高这一产品的实用性和市场竞争力。

5.局限性

采集设备离声源的距离要尽可能近,否则各个语音信号之间的独立性会很差,将大大降低算法的分离效果。
 

 6.参考文献:

[1]Lee T W, Girolami M, Sejnowski T J. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources.[J]. Neural Computation, 1999, 11(2):417-441.

[2]康春玉, 章新华, & 韩东. (2008). 一种基于盲源分离的doa估计方法. Acta Automatica Sinica, 34(10), 1324-1326.

[3]任燕, 何培宇, 闫军, & 杨茂水. (2010). 预处理对基于ica多用户检测算法影响研究. 通信技术, 43(4), 193-195.

[4]栗科峰, & 赵建峰. (2011). 基于信息极大化的ica算法研究. 通信技术, 44(5), 113-115. 

这篇关于独立成分分析ICA系列5:信息极大化的 ICA 算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445312

相关文章

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin

Python如何获取域名的SSL证书信息和到期时间

《Python如何获取域名的SSL证书信息和到期时间》在当今互联网时代,SSL证书的重要性不言而喻,它不仅为用户提供了安全的连接,还能提高网站的搜索引擎排名,那我们怎么才能通过Python获取域名的S... 目录了解SSL证书的基本概念使用python库来抓取SSL证书信息安装必要的库编写获取SSL证书信息

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory