【论文记录】Stochastic gradient descent with differentially private updates

本文主要是介绍【论文记录】Stochastic gradient descent with differentially private updates,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

记录几条疑问

  • The sample size required for a target utility level increases with the privacy constraint.
  • Optimization methods for large data sets must also be scalable.
  • SGD algorithms satisfy asymptotic guarantees


Introduction

  • 主要工作简介:
    \quad In this paper we derive differentially private versions of single-point SGD and mini-batch SGD, and evaluate them on real and synthetic data sets.

  • 更多运用SGD的原因:
    \quad Stochastic gradient descent (SGD) algorithms are simple and satisfy the same asymptotic guarantees as more computationally intensive learning methods.

  • 由于asymptotic guarantees带来的影响:
    \quad to obtain reasonable performance on finite data sets practitioners must take care in setting parameters such as the learning rate (step size) for the updates.

  • 上述影响的应对之策:
    \quad Grouping updates into “minibatches” to alleviate some of this sensitivity and improve the performance of SGD. This can improve the robustness of the updating at a moderate expense in terms of computation, but also introduces the batch size as a free parameter.


Preliminaries

  • 优化目标:
    \quad solve a regularized convex optimization problem : w ∗ = argmin w ∈ R d λ 2 ∥ w ∥ 2 + 1 n Σ i = 1 n l ( w , x i , y i ) w^* = \mathop{ \textbf{argmin} } \limits_{ w \in \mathbb{R}^d} \frac{\lambda}{2} \Vert w \Vert ^2 + \frac{1}{n} \mathop{ \Sigma }\limits_{i=1}^n \mathbb{l} (w,x_i,y_i) w=wRdargmin2λw2+n1i=1Σnl(w,xi,yi)
    \quad where w w w is the normal vector to the hyperplane separator, and l \mathbb{l} l is a convex loss function.
    \quad l \mathbb{l} l 选为 logistic loss, 即 l ( w , x , y ) = l o g ( 1 + e − y w T x ) \mathbb{l} (w,x,y)=log(1+e^{-yw^Tx}) l(w,x,y)=log(1+eywTx), 则 ⇒ \Rightarrow Logistic Regression
    \quad l \mathbb{l} l 选为 hinge loss, 即 l ( w , x , y ) = \mathbb{l} (w,x,y)= l(w,x,y)= max ( 0 , 1 − y w T x ) (0,1-yw^Tx) (0,1ywTx), 则 ⇒ \Rightarrow SVM

  • 优化算法:
    \quad SGD with mini-batch updates : w t + 1 = w t − η t ( λ w t + 1 b Σ ( x i , y i ) ∈ B t ▽ l ( w t , x i , y i ) ) w_{t+1} = w_t - \eta_t \Big( \lambda w_t + \frac{1}{b} \mathop{\Sigma}\limits_{ (x_i,y_i) \in B_t} \triangledown \mathbb{l} (w_t,x_i,y_i) \Big) wt+1=wtηt(λwt+b1(xi,yi)BtΣl(wt,xi,yi))
    \quad where η t \eta_t ηt is a learning rate, the update at each step t t t is based on a small subset B t B_t Bt of examples of size b b b.



SGD with Differential Privacy

  • 满足差分隐私的 mini-batch SGD :
    \quad A differentially-private version of the mini-batch update : w t + 1 = w t − η t ( λ w t + 1 b Σ ( x i , y i ) ∈ B t ▽ l ( w t , x i , y i ) + 1 b Z t ) w_{t+1} = w_t - \eta_t \Big( \lambda w_t + \frac{1}{b} \mathop{\Sigma}\limits_{ (x_i,y_i) \in B_t} \triangledown \mathbb{l} (w_t,x_i,y_i) \,+ \frac{1}{b}Z_t \Big) wt+1=wtηt(λwt+b1(xi,yi)BtΣl(wt,xi,yi)+b1Zt)
    \quad where Z t Z_t Zt is a random noise vector in R d \mathbb R ^d Rd drawn independently from the density: ρ ( z ) ∝ e − ( α / 2 ) ∥ z ∥ \rho(z) \propto e^{-(\alpha/2) \|z\|} ρ(z)e(α/2)z

  • 使用上式的 mini-batch update 时, 此种updates满足 α \alpha α-differentially private的条件:
    \quad T h e o r e m \mathcal{Theorem \,} Theorem If the initialization point w o w_o wo is chosen independent of the sensitive data, the batches B t B_t Bt are disjoint, and if ∥ ▽ l ( w , x , y ) ∥ ≤ 1 \| \triangledown \mathbb l(w,x,y)\| \leq 1 l(w,x,y)1 for all w w w, and all ( x i , y i ) (x_i,y_i) (xi,yi), then SGD with mini-batch updates is α \alpha α-differentially private.



Experiments

  • 实验现象:
    \quad batch size 为1时DP-SGD的方差比普通的SGD更大。但 batch size 调大后则方差减小了很多。
    在这里插入图片描述

  • 由此而总结出的经验:
    \quad In terms of objective value, guaranteeing differential privacy can come for “free” using SGD with moderate batch size.

  • 实际上 batch size 带来的影响是先减后增
    \quad increasing the batch size improved the performance of private SGD, but there is a limit , much larger batch sizes actually degrade performance.
    在这里插入图片描述


额外记录几条经验

  • 数据维度 d d d与隐私保护参数会影响实验所需的数据量:
    \quad Differentially private learning algorithms often have a sample complexity that scales linearly with the data dimension d d d and inversely with the privacy risk α \alpha α. Thus a moderate reduction in α \alpha α or increase in d d d may require more data.


Ref

S. Song, K. Chaudhuri, and A. Sarwate. Stochastic gradient descent with differentially private updates. In GlobalSIP Conference, 2013.

这篇关于【论文记录】Stochastic gradient descent with differentially private updates的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445056

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明