2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)思路模型代码解析

本文主要是介绍2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)思路模型代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)

【请电脑打开本文链接,扫描下方名片中二维码,获取更多资料】

一、问题重述

当我们使用普通的光学望远镜在昏暗的光线中观察远处的目标时,入口孔径越大,进入双筒望远镜的光线就越多。望远镜的放大倍数越大,视野就越窄,图像就越暗淡。但是放大倍数越高,目标就会显得越大,观察到的细节也会更多[1]。在光线较暗的情况下,我们需要一个比较性指标来评估双筒望远镜的适用性。蔡司公司使用了一个经验公式,称为暮光因子,其定义如下[2]:其中m为放大倍数,d为镜头直径(以毫米为单位)。 暮光因子是一个数字,用于比较在低光条件下使用的双筒望远镜或瞄准镜的效果。暮光因子越大,在低光条件下观察到的细节就越多。然而,暮光因子也可能会引导错误,就像以下例子所示:一个8×56和一个56×8的双筒望远镜(虽然这样的型号并不存在,但在理论上是可行的),它们的暮光因子都是21.2。尽管8×56型号在暮光中表现理想,但56×8的组合在白天甚至都无法使用[3]。 我们希望有一个更有用的指标,来表达望远镜在低光条件下的性能,并且仅使用基本参数。这将为望远镜选择提供一个规格参考。更详细反映图像质量的指标超出了我们的讨论范围,例如对比度、透过率、色彩还原等。

任务:

  1. 请考虑在昏暗光线下人眼的视觉特性,并建立一个合理的模型,提出适用于人眼直接观察的双筒望远镜暮光系数算法。
  2. 如果视觉接收器不是人眼而是CMOS视频录制设备,请考虑在昏暗光线下CMOS的感应特性,并建立一个合理的数学模型,提出适用于CMOS视频记录镜头的暮光系数算法。

注:在研究上述问题时,如果涉及到光感受器的性能参数,请自行查找所需数据。或者您可以在论文中计算一些虚拟示例,但您应该给出所需参数的合理定义和可行的低成本测量方法。这样我们就可以按照您的测量方案进行实施,并给出最终结果。

二、思路解析

问题一思路分析

  1. 研究人眼在暗光环境下的视觉特性:
    • 理解人眼在低光条件下的生理特征,包括视锥细胞的敏感性、视网膜的光感受性等。
    • 研究人眼在暗光环境下的视觉特性,包括视锥细胞的光敏度、暗视觉的阈值、人眼对低光环境下的适应能力等。
    • 考虑人眼的光敏度曲线,了解在不同光强度下人眼对光线的感知能力。
  2. 建立基于人眼视觉特性的暮光系数模型:
    • 考虑到人眼视觉特性,结合放大倍数和镜头直径等基本参数,构建一个适合人眼直接观察的暮光系数算法模型。
    • 考虑指数衰减模型或对人眼暗光适应性的经验公式,将放大倍数和镜头直径等参数整合到算法中。
  3. 模型验证和调整:
    • 使用实际观测数据或模拟实验来验证模型的准确性和适用性。
    • 通过与实际观察结果进行比较,对模型进行调整和优化,提高其在不同条件下的预测能力。
  4. 可行性和实施性考虑:
    • 确保所提出的算法模型具有实际可行性,并考虑其实施的便捷性和成本效益性。
    • 提供基于现有技术和可获得数据的合理测量方法,以便实施该算法并获得最终结果。
可选的模型:
  • 线性模型: 基于光敏特性和放大倍数等因素建立线性模型。
  • 指数衰减模型: 考虑到人眼在低光下的非线性感知,采用指数函数建模。
  • Logistic回归模型: 考虑光线强度、放大倍数等因素,利用Logistic回归拟合暮光系数。
  • 神经网络模型: 使用神经网络学习人眼暮光感知特性,构建更复杂的非线性模型。
Python示例代码(简化):

以下是一个简化的Python示例,用指数衰减模型建立暮光系数算法的伪代码示例:

import math# 定义函数计算暮光系数
def twilight_coefficient(magnification, lens_diameter):twilight_factor = magnification * math.sqrt(lens_diameter)return twilight_factor# 示例数据
magnification = 10
lens_diameter = 50# 计算暮光系数
twilight_factor = twilight_coefficient(magnification, lens_diameter)
print(f"暮光系数为:{twilight_factor}")

问题二思路分析

  1. 研究CMOS在低光环境下的感应特性:
    • 了解CMOS传感器在暗光条件下的灵敏度、信噪比、动态范围等特性。
    • 探索CMOS感光曲线和暗电流等影响因素,以及它们对暮光性能的影响。
  2. 建立基于CMOS传感器特性的暮光系数模型:
    • 基于CMOS传感器的感应特性,结合其在低光环境下的灵敏度和动态范围等参数,建立暮光系数算法模型。
    • 考虑Gamma校正、灰度级或噪声模型等方法,将CMOS的感应特性和暗光环境下的表现结合起来。
    • 使用已有的模型或基于信噪比、感光度等指标建立算法以计算暮光系数。
  3. 模型验证和调整:
    • 使用实际的CMOS传感器数据或模拟实验来验证和评估模型的准确性。
    • 通过与实际CMOS设备的实测数据进行比较,对模型进行调整和改进,提高其适用性和预测能力。
  4. 实施性考虑:
    • 确保所提出的算法模型适用于实际CMOS视频录制设备,并具有实施的可行性。
    • 提供基于现有技术和可获得数据的合理测量方法,以便实施该算法并获得最终结果。
可选的模型:
  • Gamma校正模型: 考虑到CMOS响应曲线,使用Gamma校正来建立暮光系数。
  • 灰度级模型: 考虑CMOS在不同亮度下的灰度级特性,建立相应的数学模型。
  • 噪声模型: 考虑噪声影响,建立噪声模型并将其纳入暮光系数计算。
Python示例代码(简化):

以下是一个简化的Python示例,用Gamma校正模型建立CMOS暮光系数算法的伪代码示例:

import math# 定义函数计算CMOS暮光系数(假设使用Gamma校正模型)
def twilight_coefficient_CMS(gamma, sensitivity):twilight_factor = math.pow(sensitivity, gamma)return twilight_factor# 示例数据
gamma_value = 2.2
sensitivity_value = 0.8# 计算暮光系数
twilight_factor_CMS = twilight_coefficient_CMS(gamma_value, sensitivity_value)
print(f"CMOS暮光系数为:{twilight_factor_CMS}")

【请电脑打开本文链接,扫描下方名片中二维码,获取更多资料】

这篇关于2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)思路模型代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/442218

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加