2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)思路模型代码解析

本文主要是介绍2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)思路模型代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)

【请电脑打开本文链接,扫描下方名片中二维码,获取更多资料】

一、问题重述

当我们使用普通的光学望远镜在昏暗的光线中观察远处的目标时,入口孔径越大,进入双筒望远镜的光线就越多。望远镜的放大倍数越大,视野就越窄,图像就越暗淡。但是放大倍数越高,目标就会显得越大,观察到的细节也会更多[1]。在光线较暗的情况下,我们需要一个比较性指标来评估双筒望远镜的适用性。蔡司公司使用了一个经验公式,称为暮光因子,其定义如下[2]:其中m为放大倍数,d为镜头直径(以毫米为单位)。 暮光因子是一个数字,用于比较在低光条件下使用的双筒望远镜或瞄准镜的效果。暮光因子越大,在低光条件下观察到的细节就越多。然而,暮光因子也可能会引导错误,就像以下例子所示:一个8×56和一个56×8的双筒望远镜(虽然这样的型号并不存在,但在理论上是可行的),它们的暮光因子都是21.2。尽管8×56型号在暮光中表现理想,但56×8的组合在白天甚至都无法使用[3]。 我们希望有一个更有用的指标,来表达望远镜在低光条件下的性能,并且仅使用基本参数。这将为望远镜选择提供一个规格参考。更详细反映图像质量的指标超出了我们的讨论范围,例如对比度、透过率、色彩还原等。

任务:

  1. 请考虑在昏暗光线下人眼的视觉特性,并建立一个合理的模型,提出适用于人眼直接观察的双筒望远镜暮光系数算法。
  2. 如果视觉接收器不是人眼而是CMOS视频录制设备,请考虑在昏暗光线下CMOS的感应特性,并建立一个合理的数学模型,提出适用于CMOS视频记录镜头的暮光系数算法。

注:在研究上述问题时,如果涉及到光感受器的性能参数,请自行查找所需数据。或者您可以在论文中计算一些虚拟示例,但您应该给出所需参数的合理定义和可行的低成本测量方法。这样我们就可以按照您的测量方案进行实施,并给出最终结果。

二、思路解析

问题一思路分析

  1. 研究人眼在暗光环境下的视觉特性:
    • 理解人眼在低光条件下的生理特征,包括视锥细胞的敏感性、视网膜的光感受性等。
    • 研究人眼在暗光环境下的视觉特性,包括视锥细胞的光敏度、暗视觉的阈值、人眼对低光环境下的适应能力等。
    • 考虑人眼的光敏度曲线,了解在不同光强度下人眼对光线的感知能力。
  2. 建立基于人眼视觉特性的暮光系数模型:
    • 考虑到人眼视觉特性,结合放大倍数和镜头直径等基本参数,构建一个适合人眼直接观察的暮光系数算法模型。
    • 考虑指数衰减模型或对人眼暗光适应性的经验公式,将放大倍数和镜头直径等参数整合到算法中。
  3. 模型验证和调整:
    • 使用实际观测数据或模拟实验来验证模型的准确性和适用性。
    • 通过与实际观察结果进行比较,对模型进行调整和优化,提高其在不同条件下的预测能力。
  4. 可行性和实施性考虑:
    • 确保所提出的算法模型具有实际可行性,并考虑其实施的便捷性和成本效益性。
    • 提供基于现有技术和可获得数据的合理测量方法,以便实施该算法并获得最终结果。
可选的模型:
  • 线性模型: 基于光敏特性和放大倍数等因素建立线性模型。
  • 指数衰减模型: 考虑到人眼在低光下的非线性感知,采用指数函数建模。
  • Logistic回归模型: 考虑光线强度、放大倍数等因素,利用Logistic回归拟合暮光系数。
  • 神经网络模型: 使用神经网络学习人眼暮光感知特性,构建更复杂的非线性模型。
Python示例代码(简化):

以下是一个简化的Python示例,用指数衰减模型建立暮光系数算法的伪代码示例:

import math# 定义函数计算暮光系数
def twilight_coefficient(magnification, lens_diameter):twilight_factor = magnification * math.sqrt(lens_diameter)return twilight_factor# 示例数据
magnification = 10
lens_diameter = 50# 计算暮光系数
twilight_factor = twilight_coefficient(magnification, lens_diameter)
print(f"暮光系数为:{twilight_factor}")

问题二思路分析

  1. 研究CMOS在低光环境下的感应特性:
    • 了解CMOS传感器在暗光条件下的灵敏度、信噪比、动态范围等特性。
    • 探索CMOS感光曲线和暗电流等影响因素,以及它们对暮光性能的影响。
  2. 建立基于CMOS传感器特性的暮光系数模型:
    • 基于CMOS传感器的感应特性,结合其在低光环境下的灵敏度和动态范围等参数,建立暮光系数算法模型。
    • 考虑Gamma校正、灰度级或噪声模型等方法,将CMOS的感应特性和暗光环境下的表现结合起来。
    • 使用已有的模型或基于信噪比、感光度等指标建立算法以计算暮光系数。
  3. 模型验证和调整:
    • 使用实际的CMOS传感器数据或模拟实验来验证和评估模型的准确性。
    • 通过与实际CMOS设备的实测数据进行比较,对模型进行调整和改进,提高其适用性和预测能力。
  4. 实施性考虑:
    • 确保所提出的算法模型适用于实际CMOS视频录制设备,并具有实施的可行性。
    • 提供基于现有技术和可获得数据的合理测量方法,以便实施该算法并获得最终结果。
可选的模型:
  • Gamma校正模型: 考虑到CMOS响应曲线,使用Gamma校正来建立暮光系数。
  • 灰度级模型: 考虑CMOS在不同亮度下的灰度级特性,建立相应的数学模型。
  • 噪声模型: 考虑噪声影响,建立噪声模型并将其纳入暮光系数计算。
Python示例代码(简化):

以下是一个简化的Python示例,用Gamma校正模型建立CMOS暮光系数算法的伪代码示例:

import math# 定义函数计算CMOS暮光系数(假设使用Gamma校正模型)
def twilight_coefficient_CMS(gamma, sensitivity):twilight_factor = math.pow(sensitivity, gamma)return twilight_factor# 示例数据
gamma_value = 2.2
sensitivity_value = 0.8# 计算暮光系数
twilight_factor_CMS = twilight_coefficient_CMS(gamma_value, sensitivity_value)
print(f"CMOS暮光系数为:{twilight_factor_CMS}")

【请电脑打开本文链接,扫描下方名片中二维码,获取更多资料】

这篇关于2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)思路模型代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/442218

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现