sutherland-hodgman 多边形裁剪算法

2023-12-01 09:20

本文主要是介绍sutherland-hodgman 多边形裁剪算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

多边形剪裁作用

所谓多边形裁剪,就是在二维平面上有一堆多边,和一个矩形窗口。求出现在窗口里的部分是哪些。


蓝线为窗口

裁剪后如下


在这里我们规定矩形的边是平行于x轴和y轴的。

算法思想

一个多边形可以使用一个点序列表示,每两个连续的点可以组成一条多边形的边。可以对边进行裁剪,最终得到裁剪后多边形的点序列。

对裁剪窗口的一个边来说,有以上4种情况。
具体实现总结为2句话:

  1. 有交点加交点。
  2. 末端点在窗口内,加入到队列中。
    总体过程如下:

    具体实现的时候

算法实现

#include "glew/2.2.0_1/include/GL/glew.h"
#include "glfw/3.3.4/include/GLFW/glfw3.h"
#include <iostream>
#include "model.h"
#include <cmath>using namespace std;class wcPt2D {
public:double x, y;wcPt2D() {}wcPt2D(double a, double b) : x(a), y(b) {}void out() {printf("%.2f, %.2f\n", x, y);}
};typedef enum {Left = 0, Right = 1, Bottom = 2, Top = 3
} Boundary;GLint inside(wcPt2D p, Boundary b, wcPt2D wMin, wcPt2D wMax) {switch (b) {case Left:if (p.x < wMin.x) return false;break;case Right:if (p.x > wMax.x) return false;break;case Bottom:if (p.y < wMin.y) return false;break;case Top:if (p.y > wMax.y) return false;break;}return true;
}GLint cross(wcPt2D p1, wcPt2D p2, Boundary winEdge, wcPt2D wMin, wcPt2D wMax) {auto b1 = inside(p1, winEdge, wMin, wMax);auto b2 = inside(p2, winEdge, wMin, wMax);return b1!=b2;
}wcPt2D intersect(wcPt2D p1, wcPt2D p2, Boundary winEdge, wcPt2D wMin, wcPt2D wMax) {wcPt2D iPt;GLfloat m;if (p1.x != p2.x) m = (p1.y - p2.y) / (p1.x - p2.x);switch (winEdge) {case Left:iPt.x = wMin.x;iPt.y = p2.y + (wMin.x - p2.x) * m;break;case Right:iPt.x = wMax.x;iPt.y = p2.y + (wMax.x - p2.x) * m;break;case Bottom:iPt.y = wMin.y;if (p1.x != p2.x) iPt.x = p2.x + (wMin.y - p2.y) / m;else iPt.x = p2.x;break;case Top:iPt.y = wMax.y;if (p1.x != p2.x) iPt.x = p2.x + (wMax.y - p2.y) / m;else iPt.x = p2.x;break;}return iPt;
}vector<wcPt2D> clipBoundary(vector<wcPt2D> &pIn, Boundary b, wcPt2D wMin, wcPt2D wMax) {vector<wcPt2D> ans;for(int i=0;i<pIn.size();i++) {auto p1 = pIn[i];auto p2 = pIn[(i+1)%pIn.size()];// 有交点,加上if (cross(p1, p2, b, wMin, wMax)) {auto pt = intersect(p1, p2, b, wMin, wMax);ans.push_back(pt);}// 末端点在窗口内,加上if(inside(p2, b, wMin, wMax)) ans.push_back(p2);}return ans;
}vector<wcPt2D> polygonClipSutherlandHodgman(wcPt2D wMin, wcPt2D wMax, vector<wcPt2D> pIn) {for(Boundary b = Left; b<=Top; b=Boundary(b+1)) {pIn = clipBoundary(pIn, b, wMin, wMax);}return pIn;
}void key_callback(GLFWwindow *window, int key, int scancode, int action, int mode) {//如果按下ESC,把windowShouldClose设置为True,外面的循环会关闭应用if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS) {glfwSetWindowShouldClose(window, GL_TRUE);std::cout << "ESC" << mode;}if (action != GLFW_PRESS)return;switch (key) {case GLFW_KEY_ESCAPE:glfwSetWindowShouldClose(window, GL_TRUE);break;default:break;}}void mouse_click(GLFWwindow *window, int button, int action, int mods) {cout << button << "," << action << "," << mods << endl;double xpos, ypos;glfwGetCursorPos(window, &xpos, &ypos);cout << xpos / 300 - 1 << "," << 1 - ypos / 300 << endl;cout << xpos << "," << ypos << endl;
}int main(void) {//初始化GLFW库if (!glfwInit())return -1;//创建窗口以及上下文GLFWwindow *window = glfwCreateWindow(600, 600, "hello world", NULL, NULL);if (!window) {//创建失败会返回NULLglfwTerminate();}//建立当前窗口的上下文glfwMakeContextCurrent(window);glfwSetKeyCallback(window, key_callback); //注册回调函数glfwSetMouseButtonCallback(window, mouse_click);//glViewport(0, 0, 400, 400);gluOrtho2D(-300, 300.0, -300, 300.0);//循环,直到用户关闭窗口cout << 123 << endl;int n = 4;wcPt2D pIn[10] = {{-100, 0},{0,    -100},{100,  0},{0,    100},};wcPt2D wMin = {-150, -150};wcPt2D wMax = {150, 150};auto pOut = polygonClipSutherlandHodgman({-75, -75}, {75,75}, vector<wcPt2D>(pIn, pIn+n));cout << pOut.size() << endl;for (auto p : pOut) {p.out();}vector<wcPt2D> pIn1 = {{-75, 175},{-160,    10},{20,  -20},};auto pOut1 = polygonClipSutherlandHodgman(wMin,wMax, pIn1);vector<wcPt2D> pIn2 = {{-160, 10},{-155,    -50},{-140,  -100},{-70,  -150},{0,  -200},{80,  -160},{160,  160},};auto pOut2 = polygonClipSutherlandHodgman(wMin,wMax, pIn2);while (!glfwWindowShouldClose(window)) {/*******轮询事件*******/glfwPollEvents();// cout<<456<<endl;//选择清空的颜色RGBAglEnable(GL_DEPTH_TEST);glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);glColor3f(0.2, 0.5, 0.8);/*glBegin(GL_LINE_STRIP);glVertex2d(-90, -80);glVertex2d(90, -80);glVertex2d(90, 80);glVertex2d(-90, 80);glVertex2d(-90, -80);glEnd();*/glBegin(GL_LINE_STRIP);glVertex2d(-150, -150);glVertex2d(150, -150);glVertex2d(150, 150);glVertex2d(-150, 150);glVertex2d(-150, -150);glEnd();/*glColor3f(1, 0.5, 0.8);glBegin(GL_POLYGON);for (auto p : pIn2) {glVertex2d(p.x, p.y);}glEnd();*/glColor3f(1, 0,0);glBegin(GL_POLYGON);for (auto p : pOut2) {glVertex2d(p.x, p.y);}glEnd();// glFlush();glfwSwapBuffers(window);}glfwTerminate();return 0;
}

算法效果

示例1


示例2


示例3



本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。

这篇关于sutherland-hodgman 多边形裁剪算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/440604

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第