AAAI 2022 | 负样本问题:时间基础度量学习的复兴

2023-11-30 20:32

本文主要是介绍AAAI 2022 | 负样本问题:时间基础度量学习的复兴,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍我们组NJU-MCG 在多模态视频片段定位领域(Temporal Grounding和Spatio-temporal Grounding任务)被AAAI 2022接收的一篇工作 Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding。

TL;DR: 本方法(Mutual Matching Network, MMN)主要是从两个角度对现有方法进行改进:

第一个角度是使用跨模态对比学习增加文本和视频特征的可辨别性(more discriminative)从而提高最终的定位效果,具体做法是增加了一个使得两个模态双向匹配(mutual matching)的损失函数从而构造了许多新的监督信号。我们首次使用了此前方法忽视的文本负样本,并且首次揭示了跨视频负样本的重要性。我们对于负样本的探究对应了标题中的negative sample matters。
第二个角度是从度量学习的角度使用了一个多模态联合建模空间(joint visual-language embedding space)替换复杂的多模态融合模块,从而大幅降低了计算开销,并且使得前面提到的双向匹配loss成为可能。

虽然此前有过一个方法使用度量学习进行建模,但其方法效果较差因此后续没有人follow这个思路。本方法的标题使用了a renaissance of metric learning试图说明度量学习的角度其实依然是一个很好的建模思路,希望有更多的后续工作follow这个思路。

论文链接(camera ready version已经更新):

https://arxiv.org/abs/2109.04872

代码链接(代码和网络权重已经开源):

https://link.zhihu.com/?target=https%3A//github.com/MCG-NJU/MMN

任务介绍

简单介绍一下什么是视频片段语言定位(Temporal Grounding)任务:属于视频领域的多模态任务(视频+文本),是视频时序检测任务的多模态版本,也是跨模态视频检索的片段版本。以下列举了一些视频领域的相关任务。

动作识别 (Action Recognition) : 对每个输入视频进行分类,识别出视频中人物做出的动作。即输入一个视频,得到视频对应的类别。方法主要是Two-Stream和3D Conv两个流派,常常作为后续视频任务的特征提取器。此任务可以关注我们组近期的工作TDN。

时序动作检测 (Temporal Action Detection/Localization) :输入一个未经裁剪的长视频 (untrimmed video),即视频中既包括有动作的前景区间,也包括没有明确语义的背景区间。任务需要检测(或定位,此任务中这两个词等价)出动作开始和结束的区间,并判断区间内动作的类别。即输入未经裁剪的视频序列,得到动作出现的区间和对应的类别。常用数据集为THUMOS14与ActivityNet。此任务可以关注我们组近期工作RTD。

跨模态视频检索(Cross-modal Video Retrieval):在一个给定的视频数据库中查询与一句话的语义最相关的那个视频。虽然与temporal grounding任务只相差一个片段定位过程,但是两个任务的方法上几乎没有相似性。这个领域使用度量学习角度的方法比较多,但是在temporal grounding领域几乎没有人follow。

视频片段语言定位 (Temporal Grounding) :输入一个未经裁剪的长视频和一句话,任务要求检测与这句话语义一致的片段的区间。本任务有很多名字,例如temporal/video grounding, cross-modal moment retrieval, natural language moment retrieval, temporal localization via language query等,代表了不同的领域对于这个任务从不同角度的看法。本任务也没有一个固定的中文名字,我们给它起的暂定的名字是多模态视频时序检测,之后提到的时候主要还是使用英文名。

这个任务的产生主要可以有两个角度来看:

(1ÿ

这篇关于AAAI 2022 | 负样本问题:时间基础度量学习的复兴的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438444

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss