AAAI 2022 | 负样本问题:时间基础度量学习的复兴

2023-11-30 20:32

本文主要是介绍AAAI 2022 | 负样本问题:时间基础度量学习的复兴,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍我们组NJU-MCG 在多模态视频片段定位领域(Temporal Grounding和Spatio-temporal Grounding任务)被AAAI 2022接收的一篇工作 Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding。

TL;DR: 本方法(Mutual Matching Network, MMN)主要是从两个角度对现有方法进行改进:

第一个角度是使用跨模态对比学习增加文本和视频特征的可辨别性(more discriminative)从而提高最终的定位效果,具体做法是增加了一个使得两个模态双向匹配(mutual matching)的损失函数从而构造了许多新的监督信号。我们首次使用了此前方法忽视的文本负样本,并且首次揭示了跨视频负样本的重要性。我们对于负样本的探究对应了标题中的negative sample matters。
第二个角度是从度量学习的角度使用了一个多模态联合建模空间(joint visual-language embedding space)替换复杂的多模态融合模块,从而大幅降低了计算开销,并且使得前面提到的双向匹配loss成为可能。

虽然此前有过一个方法使用度量学习进行建模,但其方法效果较差因此后续没有人follow这个思路。本方法的标题使用了a renaissance of metric learning试图说明度量学习的角度其实依然是一个很好的建模思路,希望有更多的后续工作follow这个思路。

论文链接(camera ready version已经更新):

https://arxiv.org/abs/2109.04872

代码链接(代码和网络权重已经开源):

https://link.zhihu.com/?target=https%3A//github.com/MCG-NJU/MMN

任务介绍

简单介绍一下什么是视频片段语言定位(Temporal Grounding)任务:属于视频领域的多模态任务(视频+文本),是视频时序检测任务的多模态版本,也是跨模态视频检索的片段版本。以下列举了一些视频领域的相关任务。

动作识别 (Action Recognition) : 对每个输入视频进行分类,识别出视频中人物做出的动作。即输入一个视频,得到视频对应的类别。方法主要是Two-Stream和3D Conv两个流派,常常作为后续视频任务的特征提取器。此任务可以关注我们组近期的工作TDN。

时序动作检测 (Temporal Action Detection/Localization) :输入一个未经裁剪的长视频 (untrimmed video),即视频中既包括有动作的前景区间,也包括没有明确语义的背景区间。任务需要检测(或定位,此任务中这两个词等价)出动作开始和结束的区间,并判断区间内动作的类别。即输入未经裁剪的视频序列,得到动作出现的区间和对应的类别。常用数据集为THUMOS14与ActivityNet。此任务可以关注我们组近期工作RTD。

跨模态视频检索(Cross-modal Video Retrieval):在一个给定的视频数据库中查询与一句话的语义最相关的那个视频。虽然与temporal grounding任务只相差一个片段定位过程,但是两个任务的方法上几乎没有相似性。这个领域使用度量学习角度的方法比较多,但是在temporal grounding领域几乎没有人follow。

视频片段语言定位 (Temporal Grounding) :输入一个未经裁剪的长视频和一句话,任务要求检测与这句话语义一致的片段的区间。本任务有很多名字,例如temporal/video grounding, cross-modal moment retrieval, natural language moment retrieval, temporal localization via language query等,代表了不同的领域对于这个任务从不同角度的看法。本任务也没有一个固定的中文名字,我们给它起的暂定的名字是多模态视频时序检测,之后提到的时候主要还是使用英文名。

这个任务的产生主要可以有两个角度来看:

(1ÿ

这篇关于AAAI 2022 | 负样本问题:时间基础度量学习的复兴的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438444

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则