使用Accelerate库在多GPU上进行LLM推理

2023-11-29 12:28

本文主要是介绍使用Accelerate库在多GPU上进行LLM推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大型语言模型(llm)已经彻底改变了自然语言处理领域。随着这些模型在规模和复杂性上的增长,推理的计算需求也显著增加。为了应对这一挑战利用多个gpu变得至关重要。

所以本文将在多个gpu上并行执行推理,主要包括:Accelerate库介绍,简单的方法与工作代码示例和使用多个gpu的性能基准测试。

本文将使用多个3090将llama2-7b的推理扩展在多个GPU上

基本示例

我们首先介绍一个简单的示例来演示使用Accelerate进行多gpu“消息传递”。

 from accelerate import Acceleratorfrom accelerate.utils import gather_objectaccelerator = Accelerator()# each GPU creates a stringmessage=[ f"Hello this is GPU {accelerator.process_index}" ] # collect the messages from all GPUsmessages=gather_object(message)# output the messages only on the main process with accelerator.print() accelerator.print(messages)

输出如下:

 ['Hello this is GPU 0', 'Hello this is GPU 1', 'Hello this is GPU 2', 'Hello this is GPU 3', 'Hello this is GPU 4']

多GPU推理

下面是一个简单的、非批处理的推理方法。代码很简单,因为Accelerate库已经帮我们做了很多工作,我们直接使用就可以:

 from accelerate import Acceleratorfrom accelerate.utils import gather_objectfrom transformers import AutoModelForCausalLM, AutoTokenizerfrom statistics import meanimport torch, time, jsonaccelerator = Accelerator()# 10*10 Prompts. Source: https://www.penguin.co.uk/articles/2022/04/best-first-lines-in-booksprompts_all=["The King is dead. Long live the Queen.","Once there were four children whose names were Peter, Susan, Edmund, and Lucy.","The story so far: in the beginning, the universe was created.","It was a bright cold day in April, and the clocks were striking thirteen.","It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.","The sweat wis lashing oafay Sick Boy; he wis trembling.","124 was spiteful. Full of Baby's venom.","As Gregor Samsa awoke one morning from uneasy dreams he found himself transformed in his bed into a gigantic insect.","I write this sitting in the kitchen sink.","We were somewhere around Barstow on the edge of the desert when the drugs began to take hold.",] * 10# load a base model and tokenizermodel_path="models/llama2-7b"model = AutoModelForCausalLM.from_pretrained(model_path,    device_map={"": accelerator.process_index},torch_dtype=torch.bfloat16,)tokenizer = AutoTokenizer.from_pretrained(model_path)   # sync GPUs and start the timeraccelerator.wait_for_everyone()start=time.time()# divide the prompt list onto the available GPUs with accelerator.split_between_processes(prompts_all) as prompts:# store output of generations in dictresults=dict(outputs=[], num_tokens=0)# have each GPU do inference, prompt by promptfor prompt in prompts:prompt_tokenized=tokenizer(prompt, return_tensors="pt").to("cuda")output_tokenized = model.generate(**prompt_tokenized, max_new_tokens=100)[0]# remove prompt from output output_tokenized=output_tokenized[len(prompt_tokenized["input_ids"][0]):]# store outputs and number of tokens in result{}results["outputs"].append( tokenizer.decode(output_tokenized) )results["num_tokens"] += len(output_tokenized)results=[ results ] # transform to list, otherwise gather_object() will not collect correctly# collect results from all the GPUsresults_gathered=gather_object(results)if accelerator.is_main_process:timediff=time.time()-startnum_tokens=sum([r["num_tokens"] for r in results_gathered ])print(f"tokens/sec: {num_tokens//timediff}, time {timediff}, total tokens {num_tokens}, total prompts {len(prompts_all)}")

使用多个gpu会导致一些通信开销:性能在4个gpu时呈线性增长,然后在这种特定设置中趋于稳定。当然这里的性能取决于许多参数,如模型大小和量化、提示长度、生成的令牌数量和采样策略,所以我们只讨论一般的情况

1 GPU: 44个token /秒,时间:225.5s

2 gpu: 88个token /秒,时间:112.9s

3 gpu: 128个token /秒,时间:77.6s

4 gpu: 137个token /秒,时间:72.7s

5 gpu: 119个token /秒,时间:83.8s

在多GPU上进行批处理

现实世界中,我们可以使用批处理推理来加快速度。这会减少GPU之间的通讯,加快推理速度。我们只需要增加prepare_prompts函数将一批数据而不是单条数据输入到模型即可:

 from accelerate import Acceleratorfrom accelerate.utils import gather_objectfrom transformers import AutoModelForCausalLM, AutoTokenizerfrom statistics import meanimport torch, time, jsonaccelerator = Accelerator()def write_pretty_json(file_path, data):import jsonwith open(file_path, "w") as write_file:json.dump(data, write_file, indent=4)# 10*10 Prompts. Source: https://www.penguin.co.uk/articles/2022/04/best-first-lines-in-booksprompts_all=["The King is dead. Long live the Queen.","Once there were four children whose names were Peter, Susan, Edmund, and Lucy.","The story so far: in the beginning, the universe was created.","It was a bright cold day in April, and the clocks were striking thirteen.","It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.","The sweat wis lashing oafay Sick Boy; he wis trembling.","124 was spiteful. Full of Baby's venom.","As Gregor Samsa awoke one morning from uneasy dreams he found himself transformed in his bed into a gigantic insect.","I write this sitting in the kitchen sink.","We were somewhere around Barstow on the edge of the desert when the drugs began to take hold.",] * 10# load a base model and tokenizermodel_path="models/llama2-7b"model = AutoModelForCausalLM.from_pretrained(model_path,    device_map={"": accelerator.process_index},torch_dtype=torch.bfloat16,)tokenizer = AutoTokenizer.from_pretrained(model_path)   tokenizer.pad_token = tokenizer.eos_token# batch, left pad (for inference), and tokenizedef prepare_prompts(prompts, tokenizer, batch_size=16):batches=[prompts[i:i + batch_size] for i in range(0, len(prompts), batch_size)]  batches_tok=[]tokenizer.padding_side="left"     for prompt_batch in batches:batches_tok.append(tokenizer(prompt_batch, return_tensors="pt", padding='longest', truncation=False, pad_to_multiple_of=8,add_special_tokens=False).to("cuda") )tokenizer.padding_side="right"return batches_tok# sync GPUs and start the timeraccelerator.wait_for_everyone()    start=time.time()# divide the prompt list onto the available GPUs with accelerator.split_between_processes(prompts_all) as prompts:results=dict(outputs=[], num_tokens=0)# have each GPU do inference in batchesprompt_batches=prepare_prompts(prompts, tokenizer, batch_size=16)for prompts_tokenized in prompt_batches:outputs_tokenized=model.generate(**prompts_tokenized, max_new_tokens=100)# remove prompt from gen. tokensoutputs_tokenized=[ tok_out[len(tok_in):] for tok_in, tok_out in zip(prompts_tokenized["input_ids"], outputs_tokenized) ] # count and decode gen. tokens num_tokens=sum([ len(t) for t in outputs_tokenized ])outputs=tokenizer.batch_decode(outputs_tokenized)# store in results{} to be gathered by accelerateresults["outputs"].extend(outputs)results["num_tokens"] += num_tokensresults=[ results ] # transform to list, otherwise gather_object() will not collect correctly# collect results from all the GPUsresults_gathered=gather_object(results)if accelerator.is_main_process:timediff=time.time()-startnum_tokens=sum([r["num_tokens"] for r in results_gathered ])print(f"tokens/sec: {num_tokens//timediff}, time elapsed: {timediff}, num_tokens {num_tokens}")

可以看到批处理会大大加快速度。

1 GPU: 520 token /sec,时间:19.2s

2 gpu: 900 token /sec,时间:11.1s

3 gpu: 1205个token /秒,时间:8.2s

4 gpu: 1655 token /sec,时间:6.0s

5 gpu: 1658 token /sec,时间:6.0s

总结

截止到本文为止,llama.cpp,ctransformer还不支持多GPU推理,好像llama.cpp在6月有个多GPU的merge,但是我没看到官方更新,所以这里暂时确定不支持多GPU。如果有小伙伴确认可以支持多GPU请留言。

huggingface的Accelerate包则为我们使用多GPU提供了一个很方便的选择,使用多个GPU推理可以显着提高性能,但gpu之间通信的开销随着gpu数量的增加而显著增加。

https://avoid.overfit.cn/post/8210f640cae0404a88fd1c9028c6aabb

作者:Geronimo

这篇关于使用Accelerate库在多GPU上进行LLM推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432819

相关文章

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.