04、基于高斯分布的异常检测算法

2023-11-29 10:12

本文主要是介绍04、基于高斯分布的异常检测算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

04、基于高斯分布的异常检测算法原理与实践

开始学习机器学习啦,已经把吴恩达的课全部刷完了,现在开始熟悉一下复现代码。对这个手写数字实部比较感兴趣,作为入门的素材非常合适。

数据的严重偏斜往往会导致监督学习算法面临巨大的挑战——尤其是在负样本数量稀缺的情况下,监督学习模型难以充分汲取必要的知识。这就引发了一个重要的问题:我们能否从这种极端不平衡的数据中成功地训练出一个有效的异常检测模型呢?答案就在于基于统计学的异常检测算法。

此类方法通常建立在一种假设之上,即给定的数据集遵循某种随机分布模型,任何与该模型明显不符的样本都会被视为异常样本。在这些基于统计学的异常检测算法中**,高斯模型是最常用分布模型**。

当然,如果给定的原始数据集不遵循高斯分布,我们可以通过坐标轴变换的方式将其变换为符合高斯分布的数据再进行异常检测。

1、基于高斯分布的异常检测算法原理

高斯分布的概率密度函数如下所示:
在这里插入图片描述
处于图片的中心位置,是概率密度最高的地方,这代表此种情况是经常发生的。越向两边概率密度越低,这代表这些情况较小发生,更有可能是异常情况。我们需要的是确定这个阈值,当概率密度小于多少时则认定其为异常。

这种基于高斯分布的异常检测算法在训练时不需要标签,只需要根据训练数据计算出各个特征的均值与方差即可(就是高斯分布的参数)。在训练之后,可以根据少量的数据确定异常的阈值,从而实现整个异常检测算法。

对于高维的异常检测算法,其理论是一致的,如下面的二维概率密度的等高线图,处于边缘的会往往会被视为异常情况(小概率出现的事件):
在这里插入图片描述
在这里插入图片描述
至于为什么小概率事件会等同于异常呢,打个比方,训练集得出结论人是吃米的,但是出来一个奇葩人居然吃虫子,那么这个不相当于出现异常了嘛。

2、基于高斯分布的异常检测算法实现

STEP1: 从训练集计算数据的分布特性,主要是均值和方差

# 计算数据的均值与方差
def estimate_gaussian(X):mu = np.mean(X, axis=0)var = np.var(X, axis=0)return mu, var

STEP2: 将交叉验证集应用到概率分布上,得到其分布概率

# 定义一个函数,名为multivariate_gaussian,输入参数为X(样本点)、mu(均值向量)和var(方差)
def multivariate_gaussian(X, mu, var):# 计算均值向量的长度,也即特征的数量k = len(mu)# 如果输入的协方差矩阵是一维的,则将其转换为对角矩阵if var.ndim == 1:var = np.diag(var)# 将输入的样本点X减去均值向量mu,进行中心化处理X = X - mu# 计算多元高斯分布的概率密度函数值# 公式中的各部分分别计算,最后相乘得到结果p = (2 * np.pi) ** (-k / 2) * np.linalg.det(var) ** (-0.5) * \np.exp(-0.5 * np.sum(np.matmul(X, np.linalg.pinv(var)) * X, axis=1))# 返回概率密度函数值return p

其对应的公式如下:
在这里插入图片描述


STEP3: 根据交叉验证集得出阈值

epsilon 的选择使用的是便利的方法,以找到一个使得F1 score最大的epsilon :

def select_threshold(y_val, p_val):"""通过选择最佳的阈值来最大化F1分数。参数:y_val (numpy数组): 真实的标签值,1代表正类,0代表负类。p_val (numpy数组): 预测的概率值。返回:best_epsilon, best_F1: 包含最佳阈值和对应的最大F1分数。"""best_epsilon = 0  # 初始化最佳阈值为0best_F1 = 0  # 初始化最佳F1分数为0F1 = 0  # 当前的F1分数# 计算步长,使得在p_val的最小值和最大值之间有1000个步骤step_size = (max(p_val) - min(p_val)) / 1000# 对p_val中的每一个值进行遍历,从最小值到最大值,步长为step_sizefor epsilon in np.arange(min(p_val), max(p_val), step_size):# 根据当前的阈值epsilon,得到预测的标签predictions = (p_val < epsilon)# 计算假阳性(预测为正但实际为负的样本数)fp = sum((predictions == 1) & (y_val == 0))# 计算真阳性(预测为正且实际为正的样本数)tp = np.sum((predictions == 1) & (y_val == 1))# 计算假阴性(预测为负但实际为正的样本数)fn = np.sum((predictions == 0) & (y_val == 1))# 计算精确度(查准率)prec = tp / (tp + fp)# 计算召回率(查全率)rec = tp / (tp + fn)# 计算F1分数F1 = 2 * prec * rec / (prec + rec)# 如果当前的F1分数比之前的最佳F1分数还要大,则更新最佳F1分数和对应的阈值if F1 > best_F1:best_F1 = F1best_epsilon = epsilon# 返回最佳阈值和对应的最大F1分数return best_epsilon, best_F1

STEP4: 由此就可以根据交叉验证集得到的阈值计算训练集中的异常数据了
下面是结果:
在这里插入图片描述

3、完整代码

工程的下载链在最上方:

import numpy as np
import matplotlib.pyplot as pltdef load_data():X = np.load("Anomaly_Detection_data/X_part1.npy")X_val = np.load("Anomaly_Detection_data/X_val_part1.npy")y_val = np.load("Anomaly_Detection_data/y_val_part1.npy")return X, X_val, y_val
# 计算数据的均值与方差
def estimate_gaussian(X):mu = np.mean(X, axis=0)var = np.var(X, axis=0)return mu, var# 定义一个函数,名为multivariate_gaussian,输入参数为X(样本点)、mu(均值向量)和var(方差)
def multivariate_gaussian(X, mu, var):# 计算均值向量的长度,也即特征的数量k = len(mu)# 如果输入的协方差矩阵是一维的,则将其转换为对角矩阵if var.ndim == 1:var = np.diag(var)# 将输入的样本点X减去均值向量mu,进行中心化处理X = X - mu# 计算多元高斯分布的概率密度函数值# 公式中的各部分分别计算,最后相乘得到结果p = (2 * np.pi) ** (-k / 2) * np.linalg.det(var) ** (-0.5) * \np.exp(-0.5 * np.sum(np.matmul(X, np.linalg.pinv(var)) * X, axis=1))# 返回概率密度函数值return pdef visualize_fit(X, mu, var):# 首先画出等高线,坐标在0, 35.5之间X1, X2 = np.meshgrid(np.arange(0, 35.5, 0.5), np.arange(0, 35.5, 0.5))Z = multivariate_gaussian(np.stack([X1.ravel(), X2.ravel()], axis=1), mu, var)Z = Z.reshape(X1.shape)plt.plot(X[:, 0], X[:, 1], 'rx')if np.sum(np.isinf(Z)) == 0:plt.contour(X1, X2, Z, levels=10 ** (np.arange(-20., 1, 3)), linewidths=1)plt.title("The Gaussian contours of the distribution fit to the dataset")plt.ylabel('Throughput (mb/s)')plt.xlabel('Latency (ms)')plt.show()def select_threshold(y_val, p_val):"""通过选择最佳的阈值来最大化F1分数。参数:y_val (numpy数组): 真实的标签值,1代表正类,0代表负类。p_val (numpy数组): 预测的概率值。返回:best_epsilon, best_F1: 包含最佳阈值和对应的最大F1分数。"""best_epsilon = 0  # 初始化最佳阈值为0best_F1 = 0  # 初始化最佳F1分数为0F1 = 0  # 当前的F1分数# 计算步长,使得在p_val的最小值和最大值之间有1000个步骤step_size = (max(p_val) - min(p_val)) / 1000# 对p_val中的每一个值进行遍历,从最小值到最大值,步长为step_sizefor epsilon in np.arange(min(p_val), max(p_val), step_size):# 根据当前的阈值epsilon,得到预测的标签predictions = (p_val < epsilon)# 计算假阳性(预测为正但实际为负的样本数)fp = sum((predictions == 1) & (y_val == 0))# 计算真阳性(预测为正且实际为正的样本数)tp = np.sum((predictions == 1) & (y_val == 1))# 计算假阴性(预测为负但实际为正的样本数)fn = np.sum((predictions == 0) & (y_val == 1))# 计算精确度(查准率)prec = tp / (tp + fp)# 计算召回率(查全率)rec = tp / (tp + fn)# 计算F1分数F1 = 2 * prec * rec / (prec + rec)# 如果当前的F1分数比之前的最佳F1分数还要大,则更新最佳F1分数和对应的阈值if F1 > best_F1:best_F1 = F1best_epsilon = epsilon# 返回最佳阈值和对应的最大F1分数return best_epsilon, best_F1# Load the dataset
# 利用吞吐量(兆比特/秒)和每台服务器的响应延迟(毫秒)来判断服务器是否正常运行
X_train, X_val, y_val = load_data()
print ('The shape of X_train is:', X_train.shape)
print ('The shape of X_val is:', X_val.shape)
print ('The shape of y_val is: ', y_val.shape)# Estimate mean and variance of each feature
# 一共两个特征,因此返回的是一个包含两个元素的数组
mu, var = estimate_gaussian(X_train)
visualize_fit(X_val, mu, var)
p_val = multivariate_gaussian(X_val, mu, var)
p = multivariate_gaussian(X_train, mu, var)
epsilon, F1 = select_threshold(y_val, p_val)# Find the outliers in the training set
outliers = p < epsilon
# Visualize the fit
visualize_fit(X_train, mu, var)
# 查看训练数据
plt.scatter(X_train[:, 0], X_train[:, 1], marker='x', c='b')
plt.title("The first dataset")
plt.ylabel('Throughput (mb/s)')
plt.xlabel('Latency (ms)')
plt.axis([0, 30, 0, 30])
# Draw a red circle around those outliers
plt.plot(X_train[outliers, 0], X_train[outliers, 1], 'ro',markersize= 10,markerfacecolor='none', markeredgewidth=2)
plt.show()

这篇关于04、基于高斯分布的异常检测算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432438

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int