盖茨表示GPT-5不会比GPT-4有太大改进;Intro to Large Language Models

2023-11-29 05:36

本文主要是介绍盖茨表示GPT-5不会比GPT-4有太大改进;Intro to Large Language Models,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

🦉 AI新闻

🚀 盖茨表示GPT-5不会比GPT-4有太大改进

摘要:比尔·盖茨在与德国《商报》的采访中透露,虽然OpenAI内部有人相信GPT-5会优于GPT-4,但他认为目前的生成式人工智能已经达到极限。盖茨对GPT-5未来的发展并不乐观,他更看好AI Agent,认为它将彻底改变人们使用计算机的方式,甚至能使人们每周只工作3天。然而,盖茨的预测并非总是准确的。

🚀 字节跳动成立专注于AI创新业务的新部门Flow

摘要:字节跳动成立了一个专注于AI创新业务的新部门Flow,已推出两款AI对话类产品并在孵化中多个AI相关创新产品。此举是字节跳动在业务和架构调整中的一部分,还从其他业务单元抽调人员参与新产品开发。字节跳动已布局从模型层到应用层的各个层面。该举措显示字节跳动在AI应用层加速推进的决心。评分:影响力25分、公众兴趣25分、新颖性25分、重要性25分。

🚀 浪潮信息发布开源的“源 2.0”基础大模型

摘要:浪潮信息发布了“源 2.0”基础大模型,并宣布全面开源。该模型通过使用高质量的中英文资料降低了互联网语料内容占比,并采用了基于大模型的数据生产及过滤方法,提升了数据质量。在算力方面,采用非均匀流水并行的方法,让模型在流水并行各阶段的显存占用量分布更均衡。源 2.0 在评测上表现中上水平,并已全面开源,可免费下载使用。

🚀 大模型注意力机制再创新:Meta引入“System 2 Attention”提升准确率27%

摘要:Meta推出了一项新研究,通过调整大模型的注意力机制,命名为“System 2 Attention”(S2A),让模型在解决问题前先把无关信息去除,从而提高准确率。这种机制不需要微调或训练,仅靠Prompt就能使大模型准确率上升27%。研究团队在测试中发现,S2A优化后的模型在准确性和客观性方面都有明显增强,与人工精简的提示词接近。该研究给AI加上了一层“护目镜”,并有可能对人类学习思维模式也有帮助。

🚀 维基百科创始人吉米·威尔士称OpenAI开发的ChatGPT写维基百科文章“很糟糕”

摘要:维基百科创始人吉米·威尔士在接受采访时表示,OpenAI开发的聊天机器人ChatGPT-4在写维基百科文章方面表现糟糕,存在遗漏内容、写错事实并编造来源的问题。威尔士认为,超人类的AI可能需要50年才能实现。不过,他愿意考虑使用AI为维基百科提供服务的可能性,如果有一个AI工具能通过比较维基百科文章和来源找出错误,AI将在减少错误信息方面发挥重要作用。然而,目前还没有具体计划。维基百科愿意与一个开源的免费AI公司合作,但必须符合维基百科原则。

🗼 AI知识

🔥 Transformers在组合任务上的局限性和改进方法

这篇文章讨论了大规模Transformer模型在解决复杂问题时的局限性。虽然Transformer在许多任务上表现出色,但在需要多步骤推理的复合问题上往往失败。研究发现,Transformer的性能随着问题复杂度的增加而下降,而且模型很难完全掌握任务。文章还指出,Transformer在解决问题时往往依赖于表面模式匹配而不是真正的推理能力。作者提出了一些改进Transformer性能的建议,包括使用规划模块和迭代改进方法。

🔥 Intro to Large Language Models

OpenAI 的大神 Andrej Karpathy 前几天在他的 YouTube 频道讲了一堂课,系统的介绍了大语言模型,内容深入浅出。



更多AI工具,参考国内AiBard123,Github-AiBard123

这篇关于盖茨表示GPT-5不会比GPT-4有太大改进;Intro to Large Language Models的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/431659

相关文章

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

一种改进的red5集群方案的应用、基于Red5服务器集群负载均衡调度算法研究

转自: 一种改进的red5集群方案的应用: http://wenku.baidu.com/link?url=jYQ1wNwHVBqJ-5XCYq0PRligp6Y5q6BYXyISUsF56My8DP8dc9CZ4pZvpPz1abxJn8fojMrL0IyfmMHStpvkotqC1RWlRMGnzVL1X4IPOa_  基于Red5服务器集群负载均衡调度算法研究 http://ww

UML- 统一建模语言(Unified Modeling Language)创建项目的序列图及类图

陈科肇 ============= 1.主要模型 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象、属性、操作、关联等概念展示系统的结构和基础,包括类图、对象图、包图。 动态模型:展现系统的内部行为。 包括序列图、活动图、状态图。 因为要创建个人空间项目并不是一个很大的项目,我这里只须关注两种图的创建就可以了,而在开始创建UML图

如何保证android程序进程不到万不得已的情况下,不会被结束

最近,做一个调用系统自带相机的那么一个功能,遇到的坑,在此记录一下。 设备:红米note4 问题起因 因为自定义的相机,很难满足客户的所有需要,比如:自拍杆的支持,优化方面等等。这些方面自定义的相机都不比系统自带的好,因为有些系统都是商家定制的,难免会出现一个奇葩的问题。比如:你在这款手机上运行,无任何问题,然而你换一款手机后,问题就出现了。 比如:小米的红米系列,你启用系统自带拍照功能后

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

YOLOv8改进实战 | 注意力篇 | 引入CVPR2024 PKINet 上下文锚点注意力CAAttention

YOLOv8专栏导航:点击此处跳转 前言 YOLOv8 是由 YOLOv5 的发布者 Ultralytics 发布的最新版本的 YOLO。它可用于对象检测、分割、分类任务以及大型数据集的学习,并且可以在包括 CPU 和 GPU 在内的各种硬件上执行。 YOLOv8 是一种尖端的、最先进的 (SOTA) 模型,它建立在以前成功的 YOLO 版本的基础上,并引入了新的功能和改进,以

看完这个不会配置 logback ,请你吃瓜!

之前在 日志?聊一聊slf4j吧 这篇文章中聊了下slf4j。本文也从实际的例子出发,针对logback的日志配置进行学习。 logack 简介 logback 官网:https://logback.qos.ch/ 目前还没有看过日志类框架的源码,仅限于如何使用。所以就不说那些“空话”了。最直观的认知是: logback和log4j是一个人写的springboot默认使用的日志框架是