大语言模型(LLMs)在 Amazon SageMaker 上的动手实践(一)

2023-11-29 01:04

本文主要是介绍大语言模型(LLMs)在 Amazon SageMaker 上的动手实践(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本期文章,我们将通过三个动手实验从浅到深地解读和演示大语言模型(LLMs),如何结合 Amazon SageMaker 的模型部署、模型编译优化、模型分布式训练等。

实验一:使用 Amazon SageMaker 构建基于开源 GPT-J 模型的对话机器人应用

开发者可以使用 Amazon SageMaker 构建一个交互式的人机对话应用 DEMO,尝试基于开源 GPT-J 模型的 Text Generation 技术。Amazon SageMaker 是亚马逊云科技公有云中的一项托管服务。作为一个云机器学习平台,可以让开发者在云中创建、训练和部署 ML 模型以此来对大语言模型有更深刻的认知。

这一动手实验仅仅使用 20 行左右的代码,即可将开源的 GPT-J 模型部署到 Amazon SageMaker 的终端节点(Endpoint),实现基于大语言模型的简单交互式人机对话。完成该实验的代码编写和模型部署预计需要 20 分钟。

什么是 GPT-J:

GPT-J 是一种生成式预训练(GPT)大语言模型,就其架构而言,它可与 GPT-3 等流行的私有大语言模型相媲美。它由大约 60 亿个参数和 28 个层组成,包括一个前馈模块和一个自注意力模块。为 GPT-J 提供推理所需的内存要低得多——在 FP16 中,模型权重占用不到 13 GB,这意味着可以在单个 16GB GPU 上轻松进行推理。

1. 创建 SageMaker Notebook 实例

在亚马逊云科技控制台(console.aws.amazon.com)上,输入 “Amazon SageMaker” 并点击进入,然后在左侧导航菜单中找到 “Notebook instances”,点击右上角的 “Create notebook instance” 开始创建。如下图所示:

在创建 Notebook instances 的过程中,需要指定在 Amazon SageMaker 中运行代码的角色(role)。由于需要访问 Amazon S3 等资源(存放模型训练需要的数据、模型构件等),因此必须设置合适的角色(role)使其具有访问相关 Amazon S3 的权限。如下图所示:

提交后等待几分钟,可以看到状态变成 “InService”,即表示该实例已经成功创建。如下图所示:

如果之前已经创建过(并且没有 delete),可以直接点击 ”Start” 重新启动实例。如下图所示:

当状态从 “Pending” 变成 “InService”, 即表示该实例已经成功启动。如下图所示:

2. 进入 Open Jupyter/JupyterLab 环境

如下图,点击 Open Jupyter 或者 Open JupyterLab 环境。我个人更喜欢 Open JupyterLab,因此本文中会主要以 Open JupyterLab 来做讲解和演示:

点击 “Terminal”,以打开一个终端:

在打开的终端中输入以下命令:

$ pwd

$ cd SageMaker

$ git clone https://github.com/hanyun2019/aigc.git

输出如下:

这时你会看到左侧菜单栏增加了 “aigc” 目录:

该目录下的文件如下图所示:

双击 “deploy-gptj.ipynb” 打开这个文件,即可开始逐步完成实验一:

3. 使用 Amazon SageMaker 构建基于开源 GPT-J 模型的对话机器人应用

以下逐行解释实验一的主要代码。

首先,需要安装 SageMaker 的相关 SDK:

!pip install -U sagemaker

然后 import 实验需要的 HuggingFace API 和 SageMaker 的 API 包:

from sagemaker.huggingface import HuggingFaceModel

import sagemaker

定义创建终端节点的 IAM 角色权限:

# IAM role with permissions to create endpoint

role = sagemaker.get_execution_role()

定义 GPT-J 模型构件所在的 S3 桶:

# public S3 URI to gpt-j artifact

model_uri="s3://huggingface-sagemaker-models/transformers/4.12.3/pytorch/1.9.1/gpt-j/model.tar.gz"

调用 HuggingFace API 来创建模型相关参数,包括:模型构件文件名、transformers 的版本号、PyTorch 的版本号、Python 的版本号、角色名等:

# create Hugging Face Model Class

huggingface_model = HuggingFaceModel(

model_data=model_uri,

transformers_version='4.12.3',

pytorch_version='1.9.1',

py_version='py38',

role=role,

)

以上设置完毕后,即可部署模型到 Amazon SageMaker 的终端节点了。可以在这里设置一些终端节点的参数,比如节点实例数量、节点类型等:

# deploy model to SageMaker Inference

predictor = huggingface_model.deploy(

initial_instance_count=1, # number of instances

instance_type='ml.g4dn.xlarge' #'ml.p3.2xlarge' # ec2 instance type

)

运行以上 “huggingface_model.deploy” 代码后,会在 Amazon SageMaker 控制台的 “EndPoints” 看到有实例正在创建(Creating)中,如下图所示:

当看到实例创建完成(InService),即可开始进行推理,即开始和聊天机器人对话了!

如下图所示,我们询问的是中国香港地区的最高建筑、最贵物业等信息。你可以自己定义问题,从中获得和大模型(GPT-J)聊天机器人对话的乐趣!

特别提醒:完成该实验后,记得删除终端节点,以避免不必要的终端节点收费。如下图所示:

这篇关于大语言模型(LLMs)在 Amazon SageMaker 上的动手实践(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430885

相关文章

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶