2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(基于yolov5的苹果分割)

本文主要是介绍2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(基于yolov5的苹果分割),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:.题中附录并没有给出苹果的标签集,所以需要我们自己通过前4问得到训练的标签集,采用的是yolov5 7.0 版本,该版本带分割功能

一:关于数据集的制作:

clc;
close all;
clear;
%-----这个是生成yolov5 数据集的--------
% 图像文件夹路径
folder_path = 'E:/新建文件夹/yatai/Attachment/Apple/';
% 图像文件列表
image_files = dir(fullfile(folder_path, '*.jpg')); % 假设所有图片都是jpg格式% 解析文件名中的数字,并转换为数值类型
numbers = cellfun(@(x) sscanf(x, '%d.jpg'), {image_files.name});% 根据解析出的数字对文件列表进行排序
[~, sorted_idx] = sort(numbers);
image_files = image_files(sorted_idx);
% 存储每张图片苹果数量的数组
apple_counts = zeros(length(image_files), 1);% 存储每张图片的平均成熟度评分
average_red_intensity_ratio_per_image = zeros(length(image_files), 1);% 确保输出文件夹存在
output_folder = 'E:\新建文件夹\yatai\Attachment\Attachment 2\APPlemasktxt';
if ~exist(output_folder, 'dir')mkdir(output_folder);
end% 存储每张图片的平均苹果质量评分
average_quality_scores_per_image = zeros(length(image_files), 1);
% 遍历每张图片
for i = 1: length(image_files) %2  % 读取图像img = imread(fullfile(folder_path, image_files(i).name));·······省略了部分代码% 给分割的对象标记不同的标签labelled_img = bwlabel(binary_img);
%     figure;
%     在原始图像上绘制分割结果
%     imshow(img);
%     hold on;colors=['b' 'g' 'r' 'c' 'm' 'y'];for k = 1:length(unique(labelled_img)) - 1boundary = bwboundaries(labelled_img == k);for b = 1:length(boundary)plot(boundary{b}(:,2), boundary{b}(:,1), colors(mod(k,length(colors))+1), 'LineWidth', 2);endend% title('Segmented Apples');% hold off;% 计数分割后的苹果number_of_apples = max(labelled_img(:));disp(['Number of segmented apples: ', num2str(number_of_apples)]);apple_counts(i) = number_of_apples;% 打印当前图片的苹果数量fprintf('Image %d (%s): %d apples detected.\n', i, image_files(i).name, number_of_apples);%下面是制作分割的数据集% 给分割的对象标记不同的标签labelled_img = bwlabel(binary_img);% 准备写入YOLOv5格式的分割轮廓点文件% 根据图像文件名创建对应的txt文件名baseFileName = sprintf('%d.txt', i);txt_filename = fullfile(output_folder, baseFileName);fileID = fopen(txt_filename, 'w');% 确保文件已成功打开if fileID == -1error('Cannot open file %s for writing.', txt_filename);end% 获取图像尺寸img_height = size(img, 1);img_width = size(img, 2);% 遍历每个苹果,写入轮廓点信息for k = 1:max(labelled_img(:))[B,~] = bwboundaries(labelled_img == k, 'noholes');contours = B{1}; % 取第一组轮廓点% 检查contours的尺寸if size(contours, 2) == 2 % 确保contours有两列% 转换为归一化坐标contours_normalized = contours ./ [img_height,  img_width];% 写入文件fprintf(fileID, '0 '); % 假设苹果的类别ID为0for p = 1:size(contours_normalized, 1)
%                 fprintf('Plotting point at (%f, %f)\n', contours_normalized(p, 2), contours_normalized(p, 1)); % 调试信息fprintf(fileID, '%f %f ', contours_normalized(p, 2), contours_normalized(p, 1));endfprintf(fileID, '\n');elsewarning('Contour for apple %d in image %d does not have correct dimensions.', k, i);endendfclose(fileID);end

二:关于yolov5 7.0 的训练:

我的电脑是3080 训练了20轮测试,下面就是部分测试的结果

下面是关于数据集的划分代码 

'''
Descripttion: split_img.py
version: 1.0
Author: UniDome
Date: 2022-04-20 16:28:45
LastEditors: UniDome
LastEditTime: 2022-04-20 16:39:56
'''
import os, shutil, random
from tqdm import tqdmdef split_img(img_path, label_path, split_list):try:  # 创建数据集文件夹Data = 'E:/新建文件夹/yatai/Attachment/Attachment 2/output'os.mkdir(Data)train_img_dir = Data + '/images/train'val_img_dir = Data + '/images/val'test_img_dir = Data + '/images/test'train_label_dir = Data + '/labels/train'val_label_dir = Data + '/labels/val'test_label_dir = Data + '/labels/test'# 创建文件夹os.makedirs(train_img_dir)os.makedirs(train_label_dir)os.makedirs(val_img_dir)os.makedirs(val_label_dir)os.makedirs(test_img_dir)os.makedirs(test_label_dir)except:print('文件目录已存在')train, val, test = split_listall_img = os.listdir(img_path)all_img_path = [os.path.join(img_path, img) for img in all_img]# all_label = os.listdir(label_path)# all_label_path = [os.path.join(label_path, label) for label in all_label]train_img = random.sample(all_img_path, int(train * len(all_img_path)))train_img_copy = [os.path.join(train_img_dir, img.split('\\')[-1]) for img in train_img]train_label = [toLabelPath(img, label_path) for img in train_img]train_label_copy = [os.path.join(train_label_dir, label.split('\\')[-1]) for label in train_label]for i in tqdm(range(len(train_img)), desc='train ', ncols=80, unit='img'):_copy(train_img[i], train_img_dir)_copy(train_label[i], train_label_dir)all_img_path.remove(train_img[i])val_img = random.sample(all_img_path, int(val / (val + test) * len(all_img_path)))val_label = [toLabelPath(img, label_path) for img in val_img]for i in tqdm(range(len(val_img)), desc='val ', ncols=80, unit='img'):_copy(val_img[i], val_img_dir)_copy(val_label[i], val_label_dir)all_img_path.remove(val_img[i])test_img = all_img_pathtest_label = [toLabelPath(img, label_path) for img in test_img]for i in tqdm(range(len(test_img)), desc='test ', ncols=80, unit='img'):_copy(test_img[i], test_img_dir)_copy(test_label[i], test_label_dir)def _copy(from_path, to_path):shutil.copy(from_path, to_path)def toLabelPath(img_path, label_path):img = img_path.split('\\')[-1]label = img.split('.jpg')[0] + '.txt'return os.path.join(label_path, label)def main():img_path = r'E:\新建文件夹\yatai\Attachment\Apple'label_path = r'E:\新建文件夹\yatai\Attachment\Attachment 2\APPlemasktxt'split_list = [0.7, 0.2, 0.1]  # 数据集划分比例[train:val:test]split_img(img_path, label_path, split_list)if __name__ == '__main__':main()

A题详细代码数据集
https://docs.qq.com/doc/DZHh5ckNrWlNybFNs

这篇关于2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(基于yolov5的苹果分割)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/427253

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

基于Java和FFmpeg实现视频压缩和剪辑功能

《基于Java和FFmpeg实现视频压缩和剪辑功能》在视频处理开发中,压缩和剪辑是常见的需求,本文将介绍如何使用Java结合FFmpeg实现视频压缩和剪辑功能,同时去除数据库操作,仅专注于视频处理,需... 目录引言1. 环境准备1.1 项目依赖1.2 安装 FFmpeg2. 视频压缩功能实现2.1 主要功

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Java实现TXT文件导入功能的详细步骤

《Java实现TXT文件导入功能的详细步骤》在实际开发中,很多应用场景需要将用户上传的TXT文件进行解析,并将文件中的数据导入到数据库或其他存储系统中,本文将演示如何用Java实现一个基本的TXT文件... 目录前言1. 项目需求分析2. 示例文件格式3. 实现步骤3.1. 准备数据库(假设使用 mysql

Springboot项目登录校验功能实现

《Springboot项目登录校验功能实现》本文介绍了Web登录校验的重要性,对比了Cookie、Session和JWT三种会话技术,分析其优缺点,并讲解了过滤器与拦截器的统一拦截方案,推荐使用JWT... 目录引言一、登录校验的基本概念二、HTTP协议的无状态性三、会话跟android踪技术1. Cook

基于Spring Boot 的小区人脸识别与出入记录管理系统功能

《基于SpringBoot的小区人脸识别与出入记录管理系统功能》文章介绍基于SpringBoot框架与百度AI人脸识别API的小区出入管理系统,实现自动识别、记录及查询功能,涵盖技术选型、数据模型... 目录系统功能概述技术栈选择核心依赖配置数据模型设计出入记录实体类出入记录查询表单出入记录 VO 类(用于

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC