2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(基于yolov5的苹果分割)

本文主要是介绍2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(基于yolov5的苹果分割),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:.题中附录并没有给出苹果的标签集,所以需要我们自己通过前4问得到训练的标签集,采用的是yolov5 7.0 版本,该版本带分割功能

一:关于数据集的制作:

clc;
close all;
clear;
%-----这个是生成yolov5 数据集的--------
% 图像文件夹路径
folder_path = 'E:/新建文件夹/yatai/Attachment/Apple/';
% 图像文件列表
image_files = dir(fullfile(folder_path, '*.jpg')); % 假设所有图片都是jpg格式% 解析文件名中的数字,并转换为数值类型
numbers = cellfun(@(x) sscanf(x, '%d.jpg'), {image_files.name});% 根据解析出的数字对文件列表进行排序
[~, sorted_idx] = sort(numbers);
image_files = image_files(sorted_idx);
% 存储每张图片苹果数量的数组
apple_counts = zeros(length(image_files), 1);% 存储每张图片的平均成熟度评分
average_red_intensity_ratio_per_image = zeros(length(image_files), 1);% 确保输出文件夹存在
output_folder = 'E:\新建文件夹\yatai\Attachment\Attachment 2\APPlemasktxt';
if ~exist(output_folder, 'dir')mkdir(output_folder);
end% 存储每张图片的平均苹果质量评分
average_quality_scores_per_image = zeros(length(image_files), 1);
% 遍历每张图片
for i = 1: length(image_files) %2  % 读取图像img = imread(fullfile(folder_path, image_files(i).name));·······省略了部分代码% 给分割的对象标记不同的标签labelled_img = bwlabel(binary_img);
%     figure;
%     在原始图像上绘制分割结果
%     imshow(img);
%     hold on;colors=['b' 'g' 'r' 'c' 'm' 'y'];for k = 1:length(unique(labelled_img)) - 1boundary = bwboundaries(labelled_img == k);for b = 1:length(boundary)plot(boundary{b}(:,2), boundary{b}(:,1), colors(mod(k,length(colors))+1), 'LineWidth', 2);endend% title('Segmented Apples');% hold off;% 计数分割后的苹果number_of_apples = max(labelled_img(:));disp(['Number of segmented apples: ', num2str(number_of_apples)]);apple_counts(i) = number_of_apples;% 打印当前图片的苹果数量fprintf('Image %d (%s): %d apples detected.\n', i, image_files(i).name, number_of_apples);%下面是制作分割的数据集% 给分割的对象标记不同的标签labelled_img = bwlabel(binary_img);% 准备写入YOLOv5格式的分割轮廓点文件% 根据图像文件名创建对应的txt文件名baseFileName = sprintf('%d.txt', i);txt_filename = fullfile(output_folder, baseFileName);fileID = fopen(txt_filename, 'w');% 确保文件已成功打开if fileID == -1error('Cannot open file %s for writing.', txt_filename);end% 获取图像尺寸img_height = size(img, 1);img_width = size(img, 2);% 遍历每个苹果,写入轮廓点信息for k = 1:max(labelled_img(:))[B,~] = bwboundaries(labelled_img == k, 'noholes');contours = B{1}; % 取第一组轮廓点% 检查contours的尺寸if size(contours, 2) == 2 % 确保contours有两列% 转换为归一化坐标contours_normalized = contours ./ [img_height,  img_width];% 写入文件fprintf(fileID, '0 '); % 假设苹果的类别ID为0for p = 1:size(contours_normalized, 1)
%                 fprintf('Plotting point at (%f, %f)\n', contours_normalized(p, 2), contours_normalized(p, 1)); % 调试信息fprintf(fileID, '%f %f ', contours_normalized(p, 2), contours_normalized(p, 1));endfprintf(fileID, '\n');elsewarning('Contour for apple %d in image %d does not have correct dimensions.', k, i);endendfclose(fileID);end

二:关于yolov5 7.0 的训练:

我的电脑是3080 训练了20轮测试,下面就是部分测试的结果

下面是关于数据集的划分代码 

'''
Descripttion: split_img.py
version: 1.0
Author: UniDome
Date: 2022-04-20 16:28:45
LastEditors: UniDome
LastEditTime: 2022-04-20 16:39:56
'''
import os, shutil, random
from tqdm import tqdmdef split_img(img_path, label_path, split_list):try:  # 创建数据集文件夹Data = 'E:/新建文件夹/yatai/Attachment/Attachment 2/output'os.mkdir(Data)train_img_dir = Data + '/images/train'val_img_dir = Data + '/images/val'test_img_dir = Data + '/images/test'train_label_dir = Data + '/labels/train'val_label_dir = Data + '/labels/val'test_label_dir = Data + '/labels/test'# 创建文件夹os.makedirs(train_img_dir)os.makedirs(train_label_dir)os.makedirs(val_img_dir)os.makedirs(val_label_dir)os.makedirs(test_img_dir)os.makedirs(test_label_dir)except:print('文件目录已存在')train, val, test = split_listall_img = os.listdir(img_path)all_img_path = [os.path.join(img_path, img) for img in all_img]# all_label = os.listdir(label_path)# all_label_path = [os.path.join(label_path, label) for label in all_label]train_img = random.sample(all_img_path, int(train * len(all_img_path)))train_img_copy = [os.path.join(train_img_dir, img.split('\\')[-1]) for img in train_img]train_label = [toLabelPath(img, label_path) for img in train_img]train_label_copy = [os.path.join(train_label_dir, label.split('\\')[-1]) for label in train_label]for i in tqdm(range(len(train_img)), desc='train ', ncols=80, unit='img'):_copy(train_img[i], train_img_dir)_copy(train_label[i], train_label_dir)all_img_path.remove(train_img[i])val_img = random.sample(all_img_path, int(val / (val + test) * len(all_img_path)))val_label = [toLabelPath(img, label_path) for img in val_img]for i in tqdm(range(len(val_img)), desc='val ', ncols=80, unit='img'):_copy(val_img[i], val_img_dir)_copy(val_label[i], val_label_dir)all_img_path.remove(val_img[i])test_img = all_img_pathtest_label = [toLabelPath(img, label_path) for img in test_img]for i in tqdm(range(len(test_img)), desc='test ', ncols=80, unit='img'):_copy(test_img[i], test_img_dir)_copy(test_label[i], test_label_dir)def _copy(from_path, to_path):shutil.copy(from_path, to_path)def toLabelPath(img_path, label_path):img = img_path.split('\\')[-1]label = img.split('.jpg')[0] + '.txt'return os.path.join(label_path, label)def main():img_path = r'E:\新建文件夹\yatai\Attachment\Apple'label_path = r'E:\新建文件夹\yatai\Attachment\Attachment 2\APPlemasktxt'split_list = [0.7, 0.2, 0.1]  # 数据集划分比例[train:val:test]split_img(img_path, label_path, split_list)if __name__ == '__main__':main()

A题详细代码数据集
https://docs.qq.com/doc/DZHh5ckNrWlNybFNs

这篇关于2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(基于yolov5的苹果分割)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/427253

相关文章

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Android实现悬浮按钮功能

《Android实现悬浮按钮功能》在很多场景中,我们希望在应用或系统任意界面上都能看到一个小的“悬浮按钮”(FloatingButton),用来快速启动工具、展示未读信息或快捷操作,所以本文给大家介绍... 目录一、项目概述二、相关技术知识三、实现思路四、整合代码4.1 Java 代码(MainActivi

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件