es - elasticsearch - aggs - bucket - rare_terms

2023-11-27 01:20

本文主要是介绍es - elasticsearch - aggs - bucket - rare_terms,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

世界上并没有完美的程序,但是我们并不因此而沮丧,因为写程序就是一个不断追求完美的过程。

问:rare_terms有什么特点?
答:
在这里插入图片描述
问:rare_terms如何使用?
答:

# 删除
DELETE /rare_terms_test# 映射
PUT /rare_terms_test
{"mappings": {"properties": {"name": {"type": "keyword"}}}
}# 索引
POST /rare_terms_test/_bulk?routing=1&refresh
{"index": {"_id": 1}}
{"name": "hello"}
{"index": {"_id": 2}}
{"name": "good"}
{"index": {"_id": 3}}
{"name": "me"}
{"index": {"_id": 4}}
{"name": "hello"}
{"index": {"_id": 5}}
{"name": "hello"}
{"index": {"_id": 6}}
{"name": "hello"}
{"index": {"_id": 7}}
{"name": "good"}
{"index": {"_id": 8}}
{"name": "kitty"}# 搜索
GET /rare_terms_test/_search?size=0
{"aggs": {"rare_terms_aggs": {"rare_terms": {"field": "name","max_doc_count": 2,"include": ["hello", "good", "me"],"exclude": ["kitty"]}}}
}# 结果
{"took" : 1,"timed_out" : false,"_shards" : {"total" : 1,"successful" : 1,"skipped" : 0,"failed" : 0},"hits" : {"total" : {"value" : 8,"relation" : "eq"},"max_score" : null,"hits" : [ ]},"aggregations" : {"rare_terms_aggs" : {"buckets" : [{"key" : "me","doc_count" : 1},{"key" : "good","doc_count" : 2}]}}
}

这篇关于es - elasticsearch - aggs - bucket - rare_terms的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/426694

相关文章

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

ElasticSearch的DSL查询⑤(ES数据聚合、DSL语法数据聚合、RestClient数据聚合)

目录 一、数据聚合 1.1 DSL实现聚合 1.1.1 Bucket聚合  1.1.2 带条件聚合 1.1.3 Metric聚合 1.1.4 总结 2.1 RestClient实现聚合 2.1.1 Bucket聚合 2.1.2 带条件聚合 2.2.3 Metric聚合 一、数据聚合 聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:

OpenGL ES学习总结:基础知识简介

什么是OpenGL ES? OpenGL ES (为OpenGL for Embedded System的缩写) 为适用于嵌入式系统的一个免费二维和三维图形库。 为桌面版本OpenGL 的一个子集。 OpenGL ES管道(Pipeline) OpenGL ES 1.x 的工序是固定的,称为Fix-Function Pipeline,可以想象一个带有很多控制开关的机器,尽管加工

OpenGL ES 2.0渲染管线

http://codingnow.cn/opengles/1504.html Opengl es 2.0实现了可编程的图形管线,比起1.x的固定管线要复杂和灵活很多,由两部分规范组成:Opengl es 2.0 API规范和Opengl es着色语言规范。下图是Opengl es 2.0渲染管线,阴影部分是opengl es 2.0的可编程阶段。   1. 顶点着色器(Vert

【docker】基于docker-compose 安装elasticsearch + kibana + ik分词器(8.10.4版本)

记录下,使用 docker-compose 安装 Elasticsearch 和 Kibana,并配置 IK 分词器,你可以按照以下步骤进行。此过程适用于 Elasticsearch 和 Kibana 8.10.4 版本。 安装 首先,在你的工作目录下创建一个 docker-compose.yml 文件,用于配置 Elasticsearch 和 Kibana 的服务。 version:

ElasticSearch底层原理简析

1.ElasticSearch简述 ElastiaSearch(以下简称ES)是一个基于Lucene的搜索服务器,它提供了一个分布式多用户能力的全文搜索引擎,支持RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。ES设计用于云计算中,能够进行实时搜索,支持PB级搜索,具有稳定,可靠,快速,安装使用方便等

ElasticSearch 6.1.1 通过Head插件,新建索引,添加文档,及其查询数据

ElasticSearch 6.1.1 通过Head插件,新建索引,添加文档,及其查询; 一、首先启动相关服务: 二、新建一个film索引: 三、建立映射: 1、通过Head插件: POST http://192.168.1.111:9200/film/_mapping/dongzuo/ {"properties": {"title": {"type":

ElasticSearch 6.1.1运用代码添加索引及其添加,修改,删除文档

1、新建一个MAVEN项目:ElasticSearchTest 2、修改pom.xml文件内容: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.or

Windows下安装Elasticsearch,启动报错,解决方法,访问

对于Windows用户,我们推荐使用MSI安装包进行安装。这个安装包使用图形用户界面来引导你进行安装。 首先,从这里https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.1.1.msi下载Elasticsearch 6.1.1的MSI安装包。 然后双击下载好的安装包文件启动图形化安装程序,在第一个界面,选