基于遗传优化的多属性判决5G-Wifi网络切换算法matlab仿真

2023-11-25 23:04

本文主要是介绍基于遗传优化的多属性判决5G-Wifi网络切换算法matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

..........................................................................
%接收功率、网络覆盖范围、速率、费用价格
%P5g,D5g,S5g,L5g,C5g
C=[1,	3,  5, 7, 9;1/3, 1,  3, 5, 7; 1/5,	1/3,1, 3, 5;1/7,	1/5, 1/3, 1,	3;1/9,	1/7, 1/5, 1/3,	1];%获得收益函数%获得收益函数f5g = (Rs(1,1)^w1)*(Rs(1,2)^w2)*(Rs(1,3)^w3)*(Rs(1,4)^w4)*(Rs(1,5)^w5) + TQOS_5g;fwf = (Rs(2,1)^w1)*(Rs(2,2)^w2)*(Rs(2,3)^w3)*(Rs(2,4)^w4)*(Rs(2,5)^w5) + TQOS_wf;%进行判决%进行判决if f5g > fwff1(i) = 1;T1_5g = T1_5g + 1;elsef1(i) = 0; T1_wf = T1_wf + 1;endif abs(f5g-fwf) < 1STOP_TIME=STOP_TIME-1;elseSTOP_TIME=STOP_TIME+1;  endSTOP_TIME=min(STOP_TIME,36);STOP_TIME=max(STOP_TIME,4);%驻留时间%驻留时间if i > STOP_TIMEC1(i) = mean(f1(i-STOP_TIME+1:i)); C2    = mean(C1(i-STOP_TIME+1:i)); f0(i) =(sign(C2-0.49)+1)/2;elseC1(i) = mean(f1(1:i));  C2    = mean(C1(1:i));f0(i) =(sign(C2-0.49)+1)/2;end%计算收益值变化值,如果变换较大,则反馈更新权值,否则权值不变%计算收益值变化值,如果变换较大,则反馈更新权值,否则权值不变ERR = abs(fwf-f5g);if ERR < 1is_opt = 0; elseis_opt = 1;  endelse%存在远大于的情况,则认为是只检测一个网络if RSS_5G   >= Beta*RSS_WIFI%5G远大于WIFI  f1(i) = 1;RSS   = RSS_5G;T1_5g = T1_5g + 1;endif RSS_WIFI >= Beta*RSS_5G%WIFI远大于5Gf1(i) = 0; RSS   = RSS_WIFI;T1_wf = T1_wf + 1;end  %驻留时间%驻留时间if i > STOP_TIMEC1(i) = mean(f1(i-STOP_TIME+1:i)); C2    = mean(C1(i-STOP_TIME+1:i)); f0(i) =(sign(C2-0.49)+1)/2;elseC1(i) = mean(f1(1:i));  C2    = mean(C1(1:i));f0(i) =(sign(C2-0.49)+1)/2;endend   end%门限更新Tt(i) = 0.5*RSS;if i == 1T = Tt(i)elseT = alpha*Tt(i) + (1-alpha)*Tt(i-1);%门限做二次平滑 end%统计切换次数if i > 3if abs(f0(i)-f0(i-1))>0.1count = count + 1;endCNT(i)=count;end 
end%Over i = 1:Nfigure;
plot(f0,'b','Linewidth',2);
hold on;
plot(1:N,0.5*ones(1,N),'r','Linewidth',2);
grid on;
xlabel('Times');
ylabel('判决门限');
axis([0,N,-0.2,1.2]);
text(N/4,1.1,'接入5G')
text(3*N/4,0.1,'接入WIFI')
title('本课题算法');figure;
plot(1:N,CNT,'r','Linewidth',2);
grid on;
xlabel('Times');
ylabel('切换次数');
title('本课题算法');
save R1.mat f0 N CNT
01_089m

4.算法理论概述

        整个网络由一个5G基站,一个WIFI基站,以及一个移动终端设备构成。移动终端设备首先位于有5G网络环境,随后运动进入5G/WIFI的异构融合网络,进行网络的切换判决,最后移出该融合网络,再次进入5G网络覆盖范围。

       本文提出了一种基于遗传优化的多属性判决5G-Wifi网络切换算法,该算法通过结合遗传算法和多属性决策理论,实现了对网络切换过程的优化和加速。具体来说,我们首先使用遗传算法对网络切换过程中的参数进行优化,然后使用多属性决策方法对网络的多个属性进行综合评估,以得到最优的网络切换决策。

       我们首先定义网络切换的问题模型。设网络的属性集合为A={a1, a2, ..., an},其中每个属性ai表示网络的某个特性,如带宽、延迟、信号强度等。设网络集合为N={n1, n2, ..., nm},其中每个网络nj表示一个可用的网络。我们的目标是在给定的时刻t,找到一个最优的网络n*∈N,使得网络切换后的综合性能最佳。为了量化网络的综合性能,我们引入一个多属性判决函数F,该函数将网络的多个属性映射到一个实数空间:

F: A→R (1)

        其中R表示实数集。这个函数可以根据不同的应用场景和需求,采用不同的形式和权重。例如,可以采用加权平均法、TOPSIS法等方法来构建。

      算法的基本步骤如下:

第一:进行RSS的计算;

第二:根据反馈门限和RSS进行网络的识别,区分存在一个网络和两个网络;

第三:在存在两个网络的情况下进行AHP分层,获得多属性参数;

第四:初始化计算多属性参数的加权值;

第五:使用改进后的遗传算法,对加权值进行优化;

第六:设计一种结合用户QOS的网络收益函数,用来判断是否切换;

第七:门限的调整,驻留时间的调整

其中,遗传算法的适应度函数如下:

我们对五个属性参数进行简单的介绍:

网络覆盖范围R:网络覆盖范围定义为设备和网络基站之间的间隔。

信号强度P:即RSS值。

网络的使用费用C:使用费用值为不同的单位流量的费用。

服务速率S:即不同的网络的速率。

传输延迟D:即不同的网络的延迟

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于遗传优化的多属性判决5G-Wifi网络切换算法matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/424768

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO