STM32-高级定时器互补输出带死区控制实验

2023-11-24 18:50

本文主要是介绍STM32-高级定时器互补输出带死区控制实验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验要求为通过定时器1通道1输出频率为1kHz,占空比为70%的PWM输出,输出模式设置为PWM1模式。

使能互补输出死区控制:设置DTG=100;使能刹车功能,刹车输入信号高电平有效,配置输出空闲状态。

以1kHz为例的话,Tout=1ms=(ARR+1)*(PSC+1)/Ft(Ft=72M),则可得PSC=71,ARR=999。

由下图可知,PE9为TIM1_CH1的引脚口,PE8为TIM1_CH1N(互补输出),PE15为TIM1的刹车控制。

 而对于定时器1的重映射,我们对重映射寄存器输入11,实现完全映射,如下图所示。

 接下来我们编写实验代码:

首先编写函数头文件atim.h:

#ifndef __ATIM_H
#define __ATIM_H#include "./SYSTEM/sys/sys.h"extern TIM_HandleTypeDef g_timx_cplm_pwm_handle;void atim_timx_cplm_pwm_init(uint16_t arr, uint16_t psc);
void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim);
void atim_timx_cplm_pwm_set(uint16_t ccr, uint8_t dtg);#endif

接下来再编写函数文件atim.c:

#include "./BSP/GTIM/gtim.h"
#include "./BSP/LED/led.h"TIM_HandleTypeDef g_timx_cplm_pwm_handle = {0};
TIM_BreakDeadTimeConfigTypeDef g_sbreak_dead_time_config = {0}; void atim_timx_cplm_pwm_init(uint16_t arr, uint16_t psc){TIM_OC_InitTypeDef timx_oc_cplm_pwm = {0};g_timx_cplm_pwm_handle.Instance = TIM1;g_timx_cplm_pwm_handle.Init.Prescaler = psc;g_timx_cplm_pwm_handle.Init.Period = arr;g_timx_cplm_pwm_handle.Init.CounterMode = TIM_COUNTERMODE_UP;//向上计数模式HAL_TIM_PWM_Init(&g_timx_cplm_pwm_handle);timx_oc_cplm_pwm.OCMode = TIM_OCMODE_PWM1;//选择PWM1模式timx_oc_cplm_pwm.OCPolarity = TIM_OCPOLARITY_HIGH;//输出极性:高极性timx_oc_cplm_pwm.OCNPolarity = TIM_OCNPOLARITY_HIGH;//互补输出极性为高电平timx_oc_cplm_pwm.OCIdleState = TIM_OCIDLESTATE_RESET;//空闲状态0(以H桥为例,2个三极管都接收低电平,导致不工作)timx_oc_cplm_pwm.OCNIdleState = TIM_OCNIDLESTATE_RESET;//互补空闲状态0(以H桥为例,另外2个三极管都接收低电平,导致不工作)HAL_TIM_PWM_ConfigChannel(&g_timx_cplm_pwm_handle, &timx_oc_cplm_pwm, TIM_CHANNEL_1);//死区参数设置g_sbreak_dead_time_config.OffStateRunMode = TIM_OSSR_DISABLE;//运行模式的关闭输出状态g_sbreak_dead_time_config.OffStateIDLEMode = TIM_OSSI_DISABLE;//空闲模式的关闭输出状态g_sbreak_dead_time_config.LockLevel = TIM_LOCKLEVEL_OFF;//不使用寄存器锁功能g_sbreak_dead_time_config.BreakState = TIM_BREAK_ENABLE;//使能刹车输入g_sbreak_dead_time_config.BreakPolarity = TIM_BREAKPOLARITY_HIGH;//刹车输入高极性g_sbreak_dead_time_config.AutomaticOutput = TIM_AUTOMATICOUTPUT_ENABLE;//使能AOE位,允许刹车结束后自动回复输出HAL_TIMEx_ConfigChannel(&g_timx_cplm_pwm_handle, &g_sbreak_dead_time_config);HAL_TIM_PWM_Start(&g_timx_cplm_pwm_handle, TIM_CHANNEL_1);HAL_TIMx_PWMN_Start(&g_timx_cplm_pwm_handle, TIM_CHANNEL_1);//互补输出通道
}void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim){if(htim->Instance == TIM1){GPIO_InitTypeDef gpio_init_struct;__HAL_RCC_GPIOE_CLK_ENABLE();__HAL_RCC_TIM1_CLK_ENABLE();gpio_init_struct.Pin = GPIO_PIN_9;gpio_init_struct.Mode = GPIO_MODE_AF_PP;gpio_init_struct.Pull = GPIO_PULLDOWN;gpio_init_struct.Speed = GPIO_SPEED_FREQ_HIGH;HAL_GPIO_Init(GPIOE, &gpio_init_struct);gpio_init_struct.Pin = GPIO_PIN_8;HAL_GPIO_Init(GPIOE, &gpio_init_struct);gpio_init_struct.Pin = GPIO_PIN_15;HAL_GPIO_Init(GPIOE, &gpio_init_struct);__HAL_RCC_AFIO_CLK_ENABLE();__HAL_AFIO_REMAP_TIM1_ENABLE();HAL_NVIC_SetPriority(TIM1_UP_IRQn, 1, 3);HAL_NVIC_ENABLEIRQ(TIM1_UP_IRQn);}
}void atim_timx_cplm_pwm_set(uint16_t ccr, uint8_t dtg){g_sbreak_dead_time_config.DeadTime = dtg;__HAL_TIM_SET_COMPARE(&g_timx_cplm_pwm_handle, TIM_CHANNEL_1, ccr);
}

最后编写我们的主函数文件main.c:

#include "./SYSTEM/delay/delay.h"
#include "./SYSTEM/usart/usart.h"
#include "./BSP/LED/led.h"
#include "./BSP/ATIM/atim.h"int main(void){uint8_t t = 0;HAL_Init();sys_stm32_clock_init(RCC_PLL_MUL9);delay_init(72);led_init();key_init();usart_init(115200);atim_timx_cplm_pwm_init(1000 - 1, 72 - 1);atim_timx_cplm_pwm_set(700 - 1, 100);while(1){delay_ms(10);t++;if(t >= 20){LED0_TOGGLE();t = 0;}}
}

如此我们的实验函数代码就编写完成了。

这篇关于STM32-高级定时器互补输出带死区控制实验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/422399

相关文章

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python使用Colorama库美化终端输出的操作示例

《Python使用Colorama库美化终端输出的操作示例》在开发命令行工具或调试程序时,我们可能会希望通过颜色来区分重要信息,比如警告、错误、提示等,而Colorama是一个简单易用的Python库... 目录python Colorama 库详解:终端输出美化的神器1. Colorama 是什么?2.

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Python实现局域网远程控制电脑

《Python实现局域网远程控制电脑》这篇文章主要为大家详细介绍了如何利用Python编写一个工具,可以实现远程控制局域网电脑关机,重启,注销等功能,感兴趣的小伙伴可以参考一下... 目录1.简介2. 运行效果3. 1.0版本相关源码服务端server.py客户端client.py4. 2.0版本相关源码1

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

顺序表之创建,判满,插入,输出

文章目录 🍊自我介绍🍊创建一个空的顺序表,为结构体在堆区分配空间🍊插入数据🍊输出数据🍊判断顺序表是否满了,满了返回值1,否则返回0🍊main函数 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞+关注+评论+收藏(一键四连)哦~ 🍊自我介绍   Hello,大家好,我是小珑也要变强(也是小珑),我是易编程·终身成长社群的一名“创始团队·嘉宾”

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时