点估计的性质和估计方法 Properties of Point Estimators and Methods of Estimation

本文主要是介绍点估计的性质和估计方法 Properties of Point Estimators and Methods of Estimation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

9.1 Introduction

9.2 Relative Efficiency

定义:

9.3 Consistency

定义:

定理:

9.4 Sufficiency

Sufficient 定义:

Likelihood 定义:

定理:

9.5 The Rao–Blackwell Theorem and Minimum-Variance Unbiased Estimation

Rao-Blackwell 定义:

MVUE 定义:

例题:

9.6 The Method of Moments

定义:

例题:

总结:

9.7 The Method of Maximum Likelihood

定义:

9.8 Some Large-Sample Properties of Maximum-Likelihood Estimators (Optional)


  • 9.1 Introduction

  • 9.2 Relative Efficiency

    • 定义:

  • 9.3 Consistency

    • 定义:

    • 定理:

  • 9.4 Sufficiency

    • Sufficient 定义:

    • Likelihood 定义:

    • 定理:

  • 9.5 The Rao–Blackwell Theorem and Minimum-Variance Unbiased Estimation

    • Rao-Blackwell 定义:

      • 提供了一个 sufficient statistic 和 unbiased estimator 之间的连接
      • 一个\hat{\theta}是θ的非偏估计,然后U是\hat{\theta}的sufficient statistic,那么U的一个函数也是θ的非偏估计,且U的方差更小。因此我们可以通过这个定理得到θ的更优非偏估计。
        • 具体步骤:1. 求出sufficient statistic U,2. 寻找h(U),使得E[h(U)]=θ。
    • MVUE 定义:

      • Minimum-variance unbiased estimator 最小方差非偏估计
    • 例题:

      • Y1, ..., Yn是伯努利变量,已知P(Yi=1)=p, P(y1=0)=1-p。求p的MVUE。
      • 解:
        • 1. 求sufficient statistic U:L(y_1, ..., y_n|p)=p(y_1)...p(y_2)=p^{y_1}(1-p)^{1-y_1}...p^{y_n}(1-p)^{1-y_n}=p^{\sum y_i}(1-p)^{n-\sum y_i} \cdot 1=g(\sum y_i, p) \cdot h(y_1, ..., y_n)\\ U=\sum y_i
        • 2. E(U)=E(\sum y_i)=np \rightarrow E(U/n)=E(\bar{Y})=p
        • 所以\bar{Y}是p的MVUE。
  • 9.6 The Method of Moments

    • 思想很简单,样本的秩应该是总体的秩的一个很好的估计。
      • 随机变量的第k个秩:\mu'_k=E(Y^k)
      • 对应的第k个样本秩:m'_k=\frac{1}{n}\sum_{i=1}^n Y_i^k
    • 定义:

    • 例题:

      • Y1, ..., Yn取自(0,θ)区间内的均分分布。θ未知,需要估计θ。
        • \mu'_1=\mu=\frac{0+\theta}{2}=\frac{\theta}{2}
        • m'_1=\frac{1}{n}\sum_{i=1}^nY_i=\bar{Y}
        • \mu'_1=m'_1 \rightarrow \frac{\theta}{2}=\bar{Y} \rightarrow \hat{\theta}=2\bar{Y}
    • 总结:

      • 很方便,计算出的估计都是consistent的。但是这些估计通常不是sufficient statistic的函数,所以不是很efficient(会比别的方法算出来的估计拥有更大的方差),有的时候甚至是biased的。
  • 9.7 The Method of Maximum Likelihood

    • 定义:

    • 一个很好的贴子:🔗
  • 9.8 Some Large-Sample Properties of Maximum-Likelihood Estimators (Optional)

这篇关于点估计的性质和估计方法 Properties of Point Estimators and Methods of Estimation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/422033

相关文章

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

前端bug调试的方法技巧及常见错误

《前端bug调试的方法技巧及常见错误》:本文主要介绍编程中常见的报错和Bug,以及调试的重要性,调试的基本流程是通过缩小范围来定位问题,并给出了推测法、删除代码法、console调试和debugg... 目录调试基本流程调试方法排查bug的两大技巧如何看控制台报错前端常见错误取值调用报错资源引入错误解析错误

Springboot控制反转与Bean对象的方法

《Springboot控制反转与Bean对象的方法》文章介绍了SpringBoot中的控制反转(IoC)概念,描述了IoC容器如何管理Bean的生命周期和依赖关系,它详细讲解了Bean的注册过程,包括... 目录1 控制反转1.1 什么是控制反转1.2 SpringBoot中的控制反转2 Ioc容器对Bea

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

Spring Boot 中正确地在异步线程中使用 HttpServletRequest的方法

《SpringBoot中正确地在异步线程中使用HttpServletRequest的方法》文章讨论了在SpringBoot中如何在异步线程中正确使用HttpServletRequest的问题,... 目录前言一、问题的来源:为什么异步线程中无法访问 HttpServletRequest?1. 请求上下文与线

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot