EI论文故障识别程序:DBN深度置信/信念网络的故障识别Matlab程序,数据由Excel导入,直接运行!

本文主要是介绍EI论文故障识别程序:DBN深度置信/信念网络的故障识别Matlab程序,数据由Excel导入,直接运行!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

​适用平台:Matlab2021b版及以上

本程序参考中文EI期刊《基于变分模态分解和改进灰狼算法优化深度置信网络的自动转换开关故障识别》中的深度置信网络(Deep Belief Network,DBN)部分进行故障识别,程序注释清晰,干货满满,下面对文章和程序做简要介绍。

这篇文献使用深度置信网络(DBN)来进行自动转换开关故障识别。DBN的训练过程分为预训练和反向微调两个阶段。预训练阶段中,通过RBMs的逐层预训练,数据从底层输入并逐层传递。每个RBM包含一个视觉层和一个隐藏层,并通过权重连接。在反向微调阶段,采用梯度下降算法对DBN进行有监督的训练,减小每层的预测误差。在RBMs中,使用对比度发散算法近似获得模型的无偏生成概率。通过合适的设置学习率和动量系数,优化DBN算法的网络结构参数,最终实现DBN在自动转换开关故障识别中的应用。

DBN结合电力系统故障识别的创新点主要体现在其对复杂、非线性系统进行建模和特征提取方面。以下是DBN在电力系统故障识别方面的创新点的详细介绍:

分层学习结构:DBN采用了分层学习的结构,包含输入层、隐含层(多个)和输出层。每一层的节点都与下一层的节点相连接,形成一个前馈的结构。这种结构使得DBN能够逐层学习数据的抽象表示,有助于捕捉电力系统数据中的复杂特征和模式。

非监督学习和有监督学习相结合:DBN的训练过程包含两个阶段:首先是无监督的贪婪逐层预训练,然后是有监督的调整网络参数。通过无监督学习,DBN可以从数据中提取高层次的特征表示,然后通过有监督学习来调整这些特征表示以完成具体任务,如故障识别。

适应性特征提取:DBN通过多层次的特征提取,能够适应复杂的电力系统数据模式。这些特征对于故障识别任务而言更具有表征能力,使得系统可以更好地区分正常运行和故障状态。

对抗性训练和鲁棒性:DBN在训练中引入对抗性训练的思想,通过使网络在面对不同情况时更具鲁棒性。这对于电力系统,面对可能的噪声和干扰,以及未知的故障模式,都具有重要的意义。

大数据处理能力:DBN在处理大规模数据方面表现出色,而电力系统通常会产生大量的实时数据。DBN的能力使其能够有效地处理这些数据,并从中提取对于故障识别有关键意义的信息。

潜在变量的建模:DBN通过潜在变量的建模,能够更好地理解电力系统中的隐含关系。这些潜在变量可以捕获系统中的复杂动态和非线性关系,从而提高故障识别的准确性。

总结:DBN在电力系统故障识别中的创新点主要体现在其深度学习结构、分层特征提取、对抗性训练等方面,使其能够更好地应对电力系统数据的复杂性和多变性。

适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。

以下是程序的输出:

测试集的混淆矩阵:(右下角为最终准确率,精确率是混淆矩阵的最下面一行,召回率是混淆矩阵的最右边一列)

精确率:是指在所有被模型预测为正类别的样本中,有多少是真正的正类别。

召回率:是指在所有实际正类别的样本中,有多少被模型正确地预测为正类别。

训练集的实际故障类别和模型识别的故障类别:

模型的训练曲线:

数据格式:一行为一个故障波形样本,最后一列为该样本所属的故障类别。

DBN建模部分代码:

%% 建立DBN
dbn.sizes = [10 5];                   % DBN各层神经元个数 第二层10 第三层5
opts.numepochs = 300;                 % RBM 训练时 迭代次数
opts.batchsize = 30;                  % 每批次使用30个样本进行训练
opts.momentum  =  0;                  % 学习率的动量
opts.alpha     =  0.01;               % 学习率因子
dbn = dbnsetup(dbn, p_train, opts);   % 建立DBN模型
dbn = dbntrain(dbn, p_train, opts);   % 训练DBN模型%% DBN移植到深层NN
nn = dbnunfoldtonn(dbn, 8);              % 反向微调(8代表有8种输出)
nn.activation_function = 'sigm';         % 激活函数%% 反向调整DBN
opts.numepochs = 500;                    % 反向微调次数
opts.alpha     = 0.001;                  % 学习率因子
opts.batchsize = 30;                     % 反向微调每次样本数
opts.output = 'softmax';                 % 激活函数
nn = nntrain(nn, p_train, t_train, opts);% 训练%% 预测 
T_sim1 = nnpredict(nn, p_train); 
T_sim2 = nnpredict(nn, p_test);%% 完整代码:https://mbd.pub/o/bread/ZZeTlpZw

部分图片来源于网络,侵权联系删除!

欢迎感兴趣的小伙伴关注我们的公众号,或点击上方链接获得完整版代码哦~,关注小编会继续推送更有质量的学习资料、文章程序代码~

这篇关于EI论文故障识别程序:DBN深度置信/信念网络的故障识别Matlab程序,数据由Excel导入,直接运行!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/420578

相关文章

解读docker运行时-itd参数是什么意思

《解读docker运行时-itd参数是什么意思》在Docker中,-itd参数组合用于在后台运行一个交互式容器,同时保持标准输入和分配伪终端,这种方式适合需要在后台运行容器并保持交互能力的场景... 目录docker运行时-itd参数是什么意思1. -i(或 --interactive)2. -t(或 --

浅析Python中的绝对导入与相对导入

《浅析Python中的绝对导入与相对导入》这篇文章主要为大家详细介绍了Python中的绝对导入与相对导入的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1 Imports快速介绍2 import语句的语法2.1 基本使用2.2 导入声明的样式3 绝对import和相对i

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Java实战之利用POI生成Excel图表

《Java实战之利用POI生成Excel图表》ApachePOI是Java生态中处理Office文档的核心工具,这篇文章主要为大家详细介绍了如何在Excel中创建折线图,柱状图,饼图等常见图表,需要的... 目录一、环境配置与依赖管理二、数据源准备与工作表构建三、图表生成核心步骤1. 折线图(Line Ch