文本匹配之Sentence Bert模型

2023-11-23 15:41

本文主要是介绍文本匹配之Sentence Bert模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • Bert句向量表示效果为什么不好?
  • Sentence Bert 原理

前言

目前,对于大部分的NLP任务来说,通过对预训练模型进行微调的方式已经取得了很好的效果,但对于某些特定的场景,我们常常需要的是文本的表示,比如文本聚类,文本匹配(搜索场景)等等;
对于文本匹配任务,在计算语义相似度时,Bert模型需要将两个句子同时进入模型,进行信息交互。

场景一:假如有10000个句子,找出最相似的句子对。
Bert模型需要计算(10000*9999/2)次,非常耗时,大约需要65个小时。而对Sentencebert模型来说,10000个句子只需要计算10000次获得自己的embedding,大约只需要5秒,进行余弦相似度计算的时间相比模型运行的时间可以忽略不计,大约需要5秒就可以完成,

5秒相比于65小时,这就是表示型和交互型的恐怖差距。

场景二:用户提出问题,将问题与数据库中的标准问题进行相似度计算,找到最相似的标准问。
Bert模型需要将用户问题与所有的标准问都计算一遍,效率非常低,而SentenceBert模型可以预先将标准库中的问题预先离线编码好,得到句向量,来新的问题(查询)后,只需要对新的问题进行编码就可以了,会大大提升效率。

Sentence Bert论文地址:
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
代码链接:
https://www.sbert.net/docs/pretrained_models.html
https://github.com/UKPLab/sentence-transformers

数据集:哈工大开源的LCQMC数据集,共20+w条数据;
评估指标:

  • Spearman Rank Correlation,测试单调关系
  • Pearson Rank Correlation,用来测试线性关系
    建议使用 Spearman Rank Correlation。

Bert句向量表示效果为什么不好?

在这里插入图片描述
由上图可见,Bert的CLS向量表示效果并不好。

原因:

Bert 的向量空间是各向异性的,且词嵌入呈现锥形分布,高频词聚集在锥头部,低频词分散在尾部,又由于高频词本身是高频的,因此会主导句子表示。

词频影响词向量空间的分布,高频词与原点的L2距离更近,更接近原点;
在这里插入图片描述
低频词分布更加稀疏,(度量词空间中与K近邻单词的L2距离的均值,可以发现高频词更加集中,低频词更加稀疏)
在这里插入图片描述
还有一种原因就是,一般用于计算文本相似度的方法是cosine similarity,公式如下在这里插入图片描述
上式的计算是要保证向量的基底是标准正交基,因此如果是非标准正交基,计算结果就会不具代表性(不准确)。

Sentence Bert 原理

Bert 模型输出句向量的方式有两种,一种是取CLS表示句向量,一种是对token_embedding做池化(平均池化/最大池化),当然还可以取不同的层进行池化(最后一层,后两层,第一层和最后一层),当然,常用的是取最后一层的平均池化。句向量做相似度计算的效果并不好,但roberta的句向量是要比bert的句向量的表示好一些的。

通常使用的损失函数为cross_entropy,可以考虑将目标函数改为cosine similarity,使得[CLS]的值就是为计算cosine similarity来服务的。论文中提出了三种方法:

第一种方法:把单个Bert改成孪生网络的结构,虽然是两个部分,但是权重是共享的,分别输入两个句子,得到对应的CLS值,即图中的 u, v,然后把 u, v, |u - v| 进行拼接,再经过 softmax 进行分类。这种方法支持两种任务:NLI任务(三分类),STS任务(二分类)。
在这里插入图片描述
第二种方法是输出的 u 与 v 需要计算cosine similarity,最后损失函数换成了平方损失函数。这种方法只适用STS任务。
在这里插入图片描述

第三种方法是将损失函数换成hinge loss的方法,a表示原句,p表示正例,n表示负例,目标就是让原句与正例的差别要比原句与负例的差别大于设定的阈值。在论文中,距离度量为欧式距离,边距大小为1。
在这里插入图片描述

参考:https://blog.csdn.net/u012526436/article/details/115736907?spm=1001.2014.3001.5501
https://zhuanlan.zhihu.com/p/113133510
https://www.sbert.net/docs/training/overview.html
https://zhuanlan.zhihu.com/p/351678987

这篇关于文本匹配之Sentence Bert模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/418973

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出