【深度学习】sentencepiece工具之BPE训练使用

2023-11-23 15:40

本文主要是介绍【深度学习】sentencepiece工具之BPE训练使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么要使用BPE,BPE是什么

BPE:迭代的将字符串里出现频率最高的子串进行合并
训练过程
在这里插入图片描述
在这里插入图片描述

使用教程

代码使用的语料在这里

# -*- coding: utf-8 -*-
#/usr/bin/python3import os
import errno
import sentencepiece as spm
import re
import logginglogging.basicConfig(level=logging.INFO)def prepro(hp):print("# Check if raw files exist")train1 = "iwslt2016/de-en/train.tags.de-en.de"train2 = "iwslt2016/de-en/train.tags.de-en.en"eval1 = "iwslt2016/de-en/IWSLT16.TED.tst2013.de-en.de.xml"eval2 = "iwslt2016/de-en/IWSLT16.TED.tst2013.de-en.en.xml"test1 = "iwslt2016/de-en/IWSLT16.TED.tst2014.de-en.de.xml"test2 = "iwslt2016/de-en/IWSLT16.TED.tst2014.de-en.en.xml"for f in (train1, train2, eval1, eval2, test1, test2):if not os.path.isfile(f):raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), f)print("# Preprocessing")# train_prepro = lambda x:  [line.strip() for line in open(x, mode='r',encoding="utf-8").read().split("\n") \if not line.startswith("<")]prepro_train1, prepro_train2 = _prepro(train1), _prepro(train2)assert len(prepro_train1)==len(prepro_train2), "Check if train source and target files match."# eval_prepro = lambda x: [re.sub("<[^>]+>", "", line).strip() \for line in open(x, mode='r',encoding="utf-8").read().split("\n") \if line.startswith("<seg id")]prepro_eval1, prepro_eval2 = _prepro(eval1), _prepro(eval2)assert len(prepro_eval1) == len(prepro_eval2), "Check if eval source and target files match."# testprepro_test1, prepro_test2 = _prepro(test1), _prepro(test2)assert len(prepro_test1) == len(prepro_test2), "Check if test source and target files match."print("Let's see how preprocessed data look like")print("prepro_train1:", prepro_train1[0])print("prepro_train2:", prepro_train2[0])print("prepro_eval1:", prepro_eval1[0])print("prepro_eval2:", prepro_eval2[0])print("prepro_test1:", prepro_test1[0])print("prepro_test2:", prepro_test2[0])print("# write preprocessed files to disk")os.makedirs("iwslt2016/prepro", exist_ok=True)def _write(sents, fname):with open(fname, mode='w',encoding="utf-8") as fout:fout.write("\n".join(sents))_write(prepro_train1, "iwslt2016/prepro/train.de")_write(prepro_train2, "iwslt2016/prepro/train.en")_write(prepro_train1+prepro_train2, "iwslt2016/prepro/train")_write(prepro_eval1, "iwslt2016/prepro/eval.de")_write(prepro_eval2, "iwslt2016/prepro/eval.en")_write(prepro_test1, "iwslt2016/prepro/test.de")_write(prepro_test2, "iwslt2016/prepro/test.en")print("# Train a joint BPE model with sentencepiece")os.makedirs("iwslt2016/segmented", exist_ok=True)train = '--input=iwslt2016/prepro/train --pad_id=0 --unk_id=1 \--bos_id=2 --eos_id=3\--model_prefix=iwslt2016/segmented/bpe --vocab_size={} \--model_type=bpe'.format(hp.vocab_size)spm.SentencePieceTrainer.Train(train)print("# Load trained bpe model")sp = spm.SentencePieceProcessor()sp.Load("iwslt2016/segmented/bpe.model")print("# Segment")def _segment_and_write(sents, fname):with open(fname,mode= "w",encoding="utf-8") as fout:for sent in sents:pieces = sp.EncodeAsPieces(sent)fout.write(" ".join(pieces) + "\n")_segment_and_write(prepro_train1, "iwslt2016/segmented/train.de.bpe")_segment_and_write(prepro_train2, "iwslt2016/segmented/train.en.bpe")_segment_and_write(prepro_eval1, "iwslt2016/segmented/eval.de.bpe")_segment_and_write(prepro_eval2, "iwslt2016/segmented/eval.en.bpe")_segment_and_write(prepro_test1, "iwslt2016/segmented/test.de.bpe")print("Let's see how segmented data look like")print("train1:", open("iwslt2016/segmented/train.de.bpe",mode='r',encoding="utf-8").readline())print("train2:", open("iwslt2016/segmented/train.en.bpe", mode='r',encoding="utf-8").readline())print("eval1:", open("iwslt2016/segmented/eval.de.bpe", mode='r',encoding="utf-8").readline())print("eval2:", open("iwslt2016/segmented/eval.en.bpe", mode='r',encoding="utf-8").readline())print("test1:", open("iwslt2016/segmented/test.de.bpe", mode='r',encoding="utf-8").readline())if __name__ == '__main__':hparams = Hparams()parser = hparams.parserhp = parser.parse_args()prepro(hp)print("Done")

这篇关于【深度学习】sentencepiece工具之BPE训练使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/418969

相关文章

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

使用TomCat,service输出台出现乱码的解决

《使用TomCat,service输出台出现乱码的解决》本文介绍了解决Tomcat服务输出台中文乱码问题的两种方法,第一种方法是修改`logging.properties`文件中的`prefix`和`... 目录使用TomCat,service输出台出现乱码问题1解决方案问题2解决方案总结使用TomCat,

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端