Kaggle Jigsaw文本分类比赛方案总结

2023-11-23 04:50

本文主要是介绍Kaggle Jigsaw文本分类比赛方案总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Kaggle Jigsaw文本分类比赛方案总结

公众号: ChallengeHub

 

以下资源来自国内外选手分享的资源与方案,非常感谢他们的无私分享

1、比赛简介

一年一度的jigsaw有毒评论比赛开赛了,这次比赛与前两次举办的比赛不同,以往比赛都是英文训练集和测试集,但是这次的比赛确是训练集是前两次比赛的训练集的一个组合,验证集则是三种语言分别是es(西班牙语)、it(意大利语)、tr(土耳其语),测试集语言则是六种语言分别是es(西班牙语)、it(意大利语)、tr(土耳其语),ru(俄语)、pt(葡萄牙语)、fr(法语)。
--kaggle的Jigsaw多语言评论识别全球top15比赛心得分享

2、题目分析

这个比赛是一个文本分类的比赛,这个比赛目标是在给定文本中判断是否为恶意评论即01分类。训练数据还给了其他多列特征,包括一些敏感词特征还有一些其他指标评价的得分特征。测试集没有这些额外的特征只有文本数据。

通过比赛的评价指标可以看出来,这个比赛不仅仅是简单的01分类的比赛。这个比赛不仅关注分类正确,还关注于在预测结果中不是恶意评论中包含敏感词和是恶意评论中不包含敏感词两部分数据的得分。所以我们需要关注一下这两类的数据。可以考虑给这两类的数据赋予更高的权重,更方便模型能够准确的对这些数据预测正确。

文本统计特征如下:

词云展示


更多有趣的数据分析大家可以看下:
https://www.kaggle.com/nz0722/simple-eda-text-preprocessing-jigsaw

 

3、第三名方案解析

  • 代码仓库:https://github.com/sakami0000/kaggle_jigsaw

  • 方案帖子:https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/discussion/97471#latest-582610

4、模型1 LstmGruNet

模型如其名,作者主要基于LSTM以及GRU两种序列循环神经网络搭建了文本分类模型

class LstmGruNet(nn.Module):def __init__(self, embedding_matrices, num_aux_targets, embedding_size=256, lstm_units=128,gru_units=128):super(LstmGruNet, self).__init__()self.embedding = ProjSumEmbedding(embedding_matrices, embedding_size)self.embedding_dropout = SpatialDropout(0.2)self.lstm = nn.LSTM(embedding_size, lstm_units, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_units * 2, gru_units, bidirectional=True, batch_first=True)dense_hidden_units = gru_units * 4self.linear1 = nn.Linear(dense_hidden_units, dense_hidden_units)self.linear2 = nn.Linear(dense_hidden_units, dense_hidden_units)self.linear_out = nn.Linear(dense_hidden_units, 1)self.linear_aux_out = nn.Linear(dense_hidden_units, num_aux_targets)def forward(self, x):h_embedding = self.embedding(x)h_embedding = self.embedding_dropout(h_embedding)h1, _ = self.lstm(h_embedding)h2, _ = self.gru(h1)# global average poolingavg_pool = torch.mean(h2, 1)# global max poolingmax_pool, _ = torch.max(h2, 1)h_conc = torch.cat((max_pool, avg_pool), 1)h_conc_linear1 = F.relu(self.linear1(h_conc))h_conc_linear2 = F.relu(self.linear2(h_conc))hidden = h_conc + h_conc_linear1 + h_conc_linear2result = self.linear_out(hidden)aux_result = self.linear_aux_out(hidden)out = torch.cat([result, aux_result], 1)return out

5、模型2 LstmCapsuleAttenModel

该模型有递归神经网络、胶囊网络以及注意力神经网络搭建。

class LstmCapsuleAttenModel(nn.Module):def __init__(self, embedding_matrix, maxlen=200, lstm_hidden_size=128, gru_hidden_size=128,embedding_dropout=0.2, dropout1=0.2, dropout2=0.1, out_size=16,num_capsule=5, dim_capsule=5, caps_out=1, caps_dropout=0.3):super(LstmCapsuleAttenModel, self).__init__()self.embedding = nn.Embedding(*embedding_matrix.shape)self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32))self.embedding.weight.requires_grad = Falseself.embedding_dropout = nn.Dropout2d(embedding_dropout)self.lstm = nn.LSTM(embedding_matrix.shape[1], lstm_hidden_size, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_hidden_size * 2, gru_hidden_size, bidirectional=True, batch_first=True)self.lstm_attention = Attention(lstm_hidden_size * 2, maxlen=maxlen)self.gru_attention = Attention(gru_hidden_size * 2, maxlen=maxlen)self.capsule = Capsule(input_dim_capsule=gru_hidden_size * 2,num_capsule=num_capsule,dim_capsule=dim_capsule)self.dropout_caps = nn.Dropout(caps_dropout)self.lin_caps = nn.Linear(num_capsule * dim_capsule, caps_out)self.norm = nn.LayerNorm(lstm_hidden_size * 2 + gru_hidden_size * 6 + caps_out)self.dropout1 = nn.Dropout(dropout1)self.linear = nn.Linear(lstm_hidden_size * 2 + gru_hidden_size * 6 + caps_out, out_size)self.dropout2 = nn.Dropout(dropout2)self.out = nn.Linear(out_size, 1)def apply_spatial_dropout(self, h_embedding):h_embedding = h_embedding.transpose(1, 2).unsqueeze(2)h_embedding = self.embedding_dropout(h_embedding).squeeze(2).transpose(1, 2)return h_embeddingdef forward(self, x):h_embedding = self.embedding(x)h_embedding = self.apply_spatial_dropout(h_embedding)h_lstm, _ = self.lstm(h_embedding)h_gru, _ = self.gru(h_lstm)h_lstm_atten = self.lstm_attention(h_lstm)h_gru_atten = self.gru_attention(h_gru)content3 = self.capsule(h_gru)batch_size = content3.size(0)content3 = content3.view(batch_size, -1)content3 = self.dropout_caps(content3)content3 = torch.relu(self.lin_caps(content3))avg_pool = torch.mean(h_gru, 1)max_pool, _ = torch.max(h_gru, 1)conc = torch.cat((h_lstm_atten, h_gru_atten, content3, avg_pool, max_pool), 1)conc = self.norm(conc)conc = self.dropout1(conc)conc = torch.relu(conc)conc = self.linear(conc)conc = self.dropout2(conc)out = self.out(conc)return out

6、模型3 LstmConvModel

该模型有LSTM和Convolutional Neural Network搭建

class LstmConvModel(nn.Module):def __init__(self, embedding_matrix, lstm_hidden_size=128, gru_hidden_size=128, n_channels=64,embedding_dropout=0.2, out_size=20, out_dropout=0.1):super(LstmConvModel, self).__init__()self.embedding = nn.Embedding(*embedding_matrix.shape)self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32))self.embedding.weight.requires_grad = Falseself.embedding_dropout = nn.Dropout2d(0.2)self.lstm = nn.LSTM(embedding_matrix.shape[1], lstm_hidden_size, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_hidden_size * 2, gru_hidden_size, bidirectional=True, batch_first=True)self.conv = nn.Conv1d(gru_hidden_size * 2, n_channels, 3, padding=2)nn.init.xavier_uniform_(self.conv.weight)self.linear = nn.Linear(n_channels * 2, out_size)self.relu = nn.ReLU()self.dropout = nn.Dropout(out_dropout)self.out = nn.Linear(out_size, 1)def apply_spatial_dropout(self, h_embedding):h_embedding = h_embedding.transpose(1, 2).unsqueeze(2)h_embedding = self.embedding_dropout(h_embedding).squeeze(2).transpose(1, 2)return h_embeddingdef forward(self, x):h_embedding = self.embedding(x)h_embedding = self.apply_spatial_dropout(h_embedding)h_lstm, _ = self.lstm(h_embedding)h_gru, _ = self.gru(h_lstm)h_gru = h_gru.transpose(2, 1)conv = self.conv(h_gru)conv_avg_pool = torch.mean(conv, 2)conv_max_pool, _ = torch.max(conv, 2)conc = torch.cat((conv_avg_pool, conv_max_pool), 1)conc = self.relu(self.linear(conc))conc = self.dropout(conc)out = self.out(conc)return out

7、模型4 Bert&GPT2

from pytorch_pretrained_bert import GPT2Model
import torch
from torch import nnclass GPT2ClassificationHeadModel(GPT2Model):def __init__(self, config, clf_dropout=0.4, n_class=8):super(GPT2ClassificationHeadModel, self).__init__(config)self.transformer = GPT2Model(config)self.dropout = nn.Dropout(clf_dropout)self.linear = nn.Linear(config.n_embd * 3, n_class)nn.init.normal_(self.linear.weight, std=0.02)nn.init.normal_(self.linear.bias, 0)self.apply(self.init_weights)def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None):hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)avg_pool = torch.mean(hidden_states, 1)max_pool, _ = torch.max(hidden_states, 1)h_conc = torch.cat((avg_pool, max_pool, hidden_states[:, -1, :]), 1)logits = self.linear(self.dropout(h_conc))return logits

代码获取:
链接:https://pan.baidu.com/s/1JdAe2sWRyuNShVhFF0ZvGg
提取码:lm80
复制这段内容后打开百度网盘手机App,操作更方便哦

8、相关知识点

1 胶囊网络

Capsule Neural 相较于传统神经网络的区别在于,传统 Neuron 每一个 node 输出为一个激活后的具体数值,而经过 Capsule 输出后得到的则是一个向量,乍一看感觉好好输出个数字,为什么要麻麻烦烦输出一个向量。其实这关乎于一个重点就是神经网络状态的表征,输出向量可以更丰富的表达节点提取的特征,甚至也可以其他降低网络层参数数目的目的。因此对于同一个特征,原本 neuron 的时候我们可能需要多个 nodes 来识别,而现在我们只需要一个 vector,用 vector 中的不同维度来记录同一个特征的不同属性。
--慢学NLP / Capsule Net 胶囊网络


论文:Towards Scalable and Reliable Capsule Networks for Challenging NLP Applications
https://www.aclweb.org/anthology/P19-1150.pdf
代码:https://github.com/andyweizhao/NLP-Capsule

 

2 Spatial Dropout

SpatialDropout是Tompson等人在图像领域提出的一种dropout方法。普通的dropout会随机地将部分元素置零,而SpatialDropout会随机地将部分区域置零,该dropout方法在图像识别领域实践证明是有效的。
--Spatial Dropout

当咱们对该张量使用dropout技术时,你会发现普通的dropout会随机独立地将部分元素置零,而SpatialDropout1D会随机地对某个特定的纬度所有置零,以下图所示:

9、更多方案解析

1、kaggle的Jigsaw多语言评论识别全球top15比赛心得分享
https://zhuanlan.zhihu.com/p/338169840
2、kaggle Jigsaw Unintended Bias in Toxicity Classification 金牌rank15分享
https://xuanzebi.github.io/2019/07/20/JUBTC/

欢迎扫码关注ChallengeHub公众号
在这里插入图片描述
欢迎加入ChallengeHub学习交流群
在这里插入图片描述

这篇关于Kaggle Jigsaw文本分类比赛方案总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415459

相关文章

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Java向kettle8.0传递参数的方式总结

《Java向kettle8.0传递参数的方式总结》介绍了如何在Kettle中传递参数到转换和作业中,包括设置全局properties、使用TransMeta和JobMeta的parameterValu... 目录1.传递参数到转换中2.传递参数到作业中总结1.传递参数到转换中1.1. 通过设置Trans的

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

C# Task Cancellation使用总结

《C#TaskCancellation使用总结》本文主要介绍了在使用CancellationTokenSource取消任务时的行为,以及如何使用Task的ContinueWith方法来处理任务的延... 目录C# Task Cancellation总结1、调用cancellationTokenSource.

Java操作xls替换文本或图片的功能实现

《Java操作xls替换文本或图片的功能实现》这篇文章主要给大家介绍了关于Java操作xls替换文本或图片功能实现的相关资料,文中通过示例代码讲解了文件上传、文件处理和Excel文件生成,需要的朋友可... 目录准备xls模板文件:template.xls准备需要替换的图片和数据功能实现包声明与导入类声明与

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert