Kaggle Jigsaw文本分类比赛方案总结

2023-11-23 04:50

本文主要是介绍Kaggle Jigsaw文本分类比赛方案总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Kaggle Jigsaw文本分类比赛方案总结

公众号: ChallengeHub

 

以下资源来自国内外选手分享的资源与方案,非常感谢他们的无私分享

1、比赛简介

一年一度的jigsaw有毒评论比赛开赛了,这次比赛与前两次举办的比赛不同,以往比赛都是英文训练集和测试集,但是这次的比赛确是训练集是前两次比赛的训练集的一个组合,验证集则是三种语言分别是es(西班牙语)、it(意大利语)、tr(土耳其语),测试集语言则是六种语言分别是es(西班牙语)、it(意大利语)、tr(土耳其语),ru(俄语)、pt(葡萄牙语)、fr(法语)。
--kaggle的Jigsaw多语言评论识别全球top15比赛心得分享

2、题目分析

这个比赛是一个文本分类的比赛,这个比赛目标是在给定文本中判断是否为恶意评论即01分类。训练数据还给了其他多列特征,包括一些敏感词特征还有一些其他指标评价的得分特征。测试集没有这些额外的特征只有文本数据。

通过比赛的评价指标可以看出来,这个比赛不仅仅是简单的01分类的比赛。这个比赛不仅关注分类正确,还关注于在预测结果中不是恶意评论中包含敏感词和是恶意评论中不包含敏感词两部分数据的得分。所以我们需要关注一下这两类的数据。可以考虑给这两类的数据赋予更高的权重,更方便模型能够准确的对这些数据预测正确。

文本统计特征如下:

词云展示


更多有趣的数据分析大家可以看下:
https://www.kaggle.com/nz0722/simple-eda-text-preprocessing-jigsaw

 

3、第三名方案解析

  • 代码仓库:https://github.com/sakami0000/kaggle_jigsaw

  • 方案帖子:https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/discussion/97471#latest-582610

4、模型1 LstmGruNet

模型如其名,作者主要基于LSTM以及GRU两种序列循环神经网络搭建了文本分类模型

class LstmGruNet(nn.Module):def __init__(self, embedding_matrices, num_aux_targets, embedding_size=256, lstm_units=128,gru_units=128):super(LstmGruNet, self).__init__()self.embedding = ProjSumEmbedding(embedding_matrices, embedding_size)self.embedding_dropout = SpatialDropout(0.2)self.lstm = nn.LSTM(embedding_size, lstm_units, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_units * 2, gru_units, bidirectional=True, batch_first=True)dense_hidden_units = gru_units * 4self.linear1 = nn.Linear(dense_hidden_units, dense_hidden_units)self.linear2 = nn.Linear(dense_hidden_units, dense_hidden_units)self.linear_out = nn.Linear(dense_hidden_units, 1)self.linear_aux_out = nn.Linear(dense_hidden_units, num_aux_targets)def forward(self, x):h_embedding = self.embedding(x)h_embedding = self.embedding_dropout(h_embedding)h1, _ = self.lstm(h_embedding)h2, _ = self.gru(h1)# global average poolingavg_pool = torch.mean(h2, 1)# global max poolingmax_pool, _ = torch.max(h2, 1)h_conc = torch.cat((max_pool, avg_pool), 1)h_conc_linear1 = F.relu(self.linear1(h_conc))h_conc_linear2 = F.relu(self.linear2(h_conc))hidden = h_conc + h_conc_linear1 + h_conc_linear2result = self.linear_out(hidden)aux_result = self.linear_aux_out(hidden)out = torch.cat([result, aux_result], 1)return out

5、模型2 LstmCapsuleAttenModel

该模型有递归神经网络、胶囊网络以及注意力神经网络搭建。

class LstmCapsuleAttenModel(nn.Module):def __init__(self, embedding_matrix, maxlen=200, lstm_hidden_size=128, gru_hidden_size=128,embedding_dropout=0.2, dropout1=0.2, dropout2=0.1, out_size=16,num_capsule=5, dim_capsule=5, caps_out=1, caps_dropout=0.3):super(LstmCapsuleAttenModel, self).__init__()self.embedding = nn.Embedding(*embedding_matrix.shape)self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32))self.embedding.weight.requires_grad = Falseself.embedding_dropout = nn.Dropout2d(embedding_dropout)self.lstm = nn.LSTM(embedding_matrix.shape[1], lstm_hidden_size, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_hidden_size * 2, gru_hidden_size, bidirectional=True, batch_first=True)self.lstm_attention = Attention(lstm_hidden_size * 2, maxlen=maxlen)self.gru_attention = Attention(gru_hidden_size * 2, maxlen=maxlen)self.capsule = Capsule(input_dim_capsule=gru_hidden_size * 2,num_capsule=num_capsule,dim_capsule=dim_capsule)self.dropout_caps = nn.Dropout(caps_dropout)self.lin_caps = nn.Linear(num_capsule * dim_capsule, caps_out)self.norm = nn.LayerNorm(lstm_hidden_size * 2 + gru_hidden_size * 6 + caps_out)self.dropout1 = nn.Dropout(dropout1)self.linear = nn.Linear(lstm_hidden_size * 2 + gru_hidden_size * 6 + caps_out, out_size)self.dropout2 = nn.Dropout(dropout2)self.out = nn.Linear(out_size, 1)def apply_spatial_dropout(self, h_embedding):h_embedding = h_embedding.transpose(1, 2).unsqueeze(2)h_embedding = self.embedding_dropout(h_embedding).squeeze(2).transpose(1, 2)return h_embeddingdef forward(self, x):h_embedding = self.embedding(x)h_embedding = self.apply_spatial_dropout(h_embedding)h_lstm, _ = self.lstm(h_embedding)h_gru, _ = self.gru(h_lstm)h_lstm_atten = self.lstm_attention(h_lstm)h_gru_atten = self.gru_attention(h_gru)content3 = self.capsule(h_gru)batch_size = content3.size(0)content3 = content3.view(batch_size, -1)content3 = self.dropout_caps(content3)content3 = torch.relu(self.lin_caps(content3))avg_pool = torch.mean(h_gru, 1)max_pool, _ = torch.max(h_gru, 1)conc = torch.cat((h_lstm_atten, h_gru_atten, content3, avg_pool, max_pool), 1)conc = self.norm(conc)conc = self.dropout1(conc)conc = torch.relu(conc)conc = self.linear(conc)conc = self.dropout2(conc)out = self.out(conc)return out

6、模型3 LstmConvModel

该模型有LSTM和Convolutional Neural Network搭建

class LstmConvModel(nn.Module):def __init__(self, embedding_matrix, lstm_hidden_size=128, gru_hidden_size=128, n_channels=64,embedding_dropout=0.2, out_size=20, out_dropout=0.1):super(LstmConvModel, self).__init__()self.embedding = nn.Embedding(*embedding_matrix.shape)self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32))self.embedding.weight.requires_grad = Falseself.embedding_dropout = nn.Dropout2d(0.2)self.lstm = nn.LSTM(embedding_matrix.shape[1], lstm_hidden_size, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_hidden_size * 2, gru_hidden_size, bidirectional=True, batch_first=True)self.conv = nn.Conv1d(gru_hidden_size * 2, n_channels, 3, padding=2)nn.init.xavier_uniform_(self.conv.weight)self.linear = nn.Linear(n_channels * 2, out_size)self.relu = nn.ReLU()self.dropout = nn.Dropout(out_dropout)self.out = nn.Linear(out_size, 1)def apply_spatial_dropout(self, h_embedding):h_embedding = h_embedding.transpose(1, 2).unsqueeze(2)h_embedding = self.embedding_dropout(h_embedding).squeeze(2).transpose(1, 2)return h_embeddingdef forward(self, x):h_embedding = self.embedding(x)h_embedding = self.apply_spatial_dropout(h_embedding)h_lstm, _ = self.lstm(h_embedding)h_gru, _ = self.gru(h_lstm)h_gru = h_gru.transpose(2, 1)conv = self.conv(h_gru)conv_avg_pool = torch.mean(conv, 2)conv_max_pool, _ = torch.max(conv, 2)conc = torch.cat((conv_avg_pool, conv_max_pool), 1)conc = self.relu(self.linear(conc))conc = self.dropout(conc)out = self.out(conc)return out

7、模型4 Bert&GPT2

from pytorch_pretrained_bert import GPT2Model
import torch
from torch import nnclass GPT2ClassificationHeadModel(GPT2Model):def __init__(self, config, clf_dropout=0.4, n_class=8):super(GPT2ClassificationHeadModel, self).__init__(config)self.transformer = GPT2Model(config)self.dropout = nn.Dropout(clf_dropout)self.linear = nn.Linear(config.n_embd * 3, n_class)nn.init.normal_(self.linear.weight, std=0.02)nn.init.normal_(self.linear.bias, 0)self.apply(self.init_weights)def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None):hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)avg_pool = torch.mean(hidden_states, 1)max_pool, _ = torch.max(hidden_states, 1)h_conc = torch.cat((avg_pool, max_pool, hidden_states[:, -1, :]), 1)logits = self.linear(self.dropout(h_conc))return logits

代码获取:
链接:https://pan.baidu.com/s/1JdAe2sWRyuNShVhFF0ZvGg
提取码:lm80
复制这段内容后打开百度网盘手机App,操作更方便哦

8、相关知识点

1 胶囊网络

Capsule Neural 相较于传统神经网络的区别在于,传统 Neuron 每一个 node 输出为一个激活后的具体数值,而经过 Capsule 输出后得到的则是一个向量,乍一看感觉好好输出个数字,为什么要麻麻烦烦输出一个向量。其实这关乎于一个重点就是神经网络状态的表征,输出向量可以更丰富的表达节点提取的特征,甚至也可以其他降低网络层参数数目的目的。因此对于同一个特征,原本 neuron 的时候我们可能需要多个 nodes 来识别,而现在我们只需要一个 vector,用 vector 中的不同维度来记录同一个特征的不同属性。
--慢学NLP / Capsule Net 胶囊网络


论文:Towards Scalable and Reliable Capsule Networks for Challenging NLP Applications
https://www.aclweb.org/anthology/P19-1150.pdf
代码:https://github.com/andyweizhao/NLP-Capsule

 

2 Spatial Dropout

SpatialDropout是Tompson等人在图像领域提出的一种dropout方法。普通的dropout会随机地将部分元素置零,而SpatialDropout会随机地将部分区域置零,该dropout方法在图像识别领域实践证明是有效的。
--Spatial Dropout

当咱们对该张量使用dropout技术时,你会发现普通的dropout会随机独立地将部分元素置零,而SpatialDropout1D会随机地对某个特定的纬度所有置零,以下图所示:

9、更多方案解析

1、kaggle的Jigsaw多语言评论识别全球top15比赛心得分享
https://zhuanlan.zhihu.com/p/338169840
2、kaggle Jigsaw Unintended Bias in Toxicity Classification 金牌rank15分享
https://xuanzebi.github.io/2019/07/20/JUBTC/

欢迎扫码关注ChallengeHub公众号
在这里插入图片描述
欢迎加入ChallengeHub学习交流群
在这里插入图片描述

这篇关于Kaggle Jigsaw文本分类比赛方案总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415459

相关文章

C# List.Sort四种重载总结

《C#List.Sort四种重载总结》本文详细分析了C#中List.Sort()方法的四种重载形式及其实现原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录1. Sort方法的四种重载2. 具体使用- List.Sort();- IComparable

SpringBoot项目整合Netty启动失败的常见错误总结

《SpringBoot项目整合Netty启动失败的常见错误总结》本文总结了SpringBoot集成Netty时常见的8类问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、端口冲突问题1. Tomcat与Netty端口冲突二、主线程被阻塞问题1. Netty启动阻

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

Python实现繁体转简体功能的三种方案

《Python实现繁体转简体功能的三种方案》在中文信息处理中,繁体字与简体字的转换是一个常见需求,无论是处理港澳台地区的文本数据,还是开发面向不同中文用户群体的应用,繁简转换都是不可或缺的功能,本文将... 目录前言为什么需要繁简转换?python实现方案方案一:使用opencc库方案二:使用zhconv库

python3中正则表达式处理函数用法总结

《python3中正则表达式处理函数用法总结》Python中的正则表达式是一个强大的文本处理工具,用于匹配、查找、替换等操作,在Python中正则表达式的操作主要通过内置的re模块来实现,这篇文章主要... 目录前言re.match函数re.search方法re.match 与 re.search的区别检索

MyBatis Plus中执行原生SQL语句方法常见方案

《MyBatisPlus中执行原生SQL语句方法常见方案》MyBatisPlus提供了多种执行原生SQL语句的方法,包括使用SqlRunner工具类、@Select注解和XML映射文件,每种方法都有... 目录 如何使用这些方法1. 使用 SqlRunner 工具类2. 使用 @Select 注解3. 使用

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代