Attentional Feature Fusion中所提的注意力模块的代码

2023-11-22 20:10

本文主要是介绍Attentional Feature Fusion中所提的注意力模块的代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近看了Attentional Feature Fusion这篇文章,对其提出的注意力机制模块很感兴趣,所以就上github找了一下,为了方便自己记录和使用,所以就复制到这里了。

源代码的github的网址:https://github.com/YimianDai/open-aff/aff_pytorch/aff_net/fusion.py

论文的下载地址:https://arxiv.org/abs/2009.14082

在这里插入图片描述

MS-CAM的代码如下:

class MS_CAM(nn.Module):'''单特征 进行通道加权,作用类似SE模块'''def __init__(self, channels=64, r=4):super(MS_CAM, self).__init__()inter_channels = int(channels // r)self.local_att = nn.Sequential(nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(inter_channels),nn.ReLU(inplace=True),nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(channels),)self.global_att = nn.Sequential(nn.AdaptiveAvgPool2d(1),nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(inter_channels),nn.ReLU(inplace=True),nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(channels),)self.sigmoid = nn.Sigmoid()def forward(self, x):xl = self.local_att(x)xg = self.global_att(x)xlg = xl + xgwei = self.sigmoid(xlg)return x * wei

在这里插入图片描述

AFF的代码如下:

class AFF(nn.Module):'''多特征融合 AFF'''def __init__(self, channels=64, r=4):super(AFF, self).__init__()inter_channels = int(channels // r)self.local_att = nn.Sequential(nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(inter_channels),nn.ReLU(inplace=True),nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(channels),)self.global_att = nn.Sequential(nn.AdaptiveAvgPool2d(1),nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(inter_channels),nn.ReLU(inplace=True),nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(channels),)self.sigmoid = nn.Sigmoid()def forward(self, x, residual):xa = x + residualxl = self.local_att(xa)xg = self.global_att(xa)xlg = xl + xgwei = self.sigmoid(xlg)xo = 2 * x * wei + 2 * residual * (1 - wei)return xo# if __name__ == '__main__':
#     import os
#     os.environ['CUDA_VISIBLE_DEVICES'] = "0"
#     device = torch.device("cuda:0")
#
#     x, residual= torch.ones(8,64, 32, 32).to(device),torch.ones(8,64, 32, 32).to(device)
#     channels=x.shape[1]
#
#     model=AFF(channels=channels)
#     model=model.to(device).train()
#     output = model(x, residual)
#     print(output.shape)

在这里插入图片描述### iAFF的代码如下:

class iAFF(nn.Module):'''多特征融合 iAFF'''def __init__(self, channels=64, r=4):super(iAFF, self).__init__()inter_channels = int(channels // r)# 本地注意力self.local_att = nn.Sequential(nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(inter_channels),nn.ReLU(inplace=True),nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(channels),)# 全局注意力self.global_att = nn.Sequential(nn.AdaptiveAvgPool2d(1),nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(inter_channels),nn.ReLU(inplace=True),nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(channels),)# 第二次本地注意力self.local_att2 = nn.Sequential(nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(inter_channels),nn.ReLU(inplace=True),nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(channels),)# 第二次全局注意力self.global_att2 = nn.Sequential(nn.AdaptiveAvgPool2d(1),nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(inter_channels),nn.ReLU(inplace=True),nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),nn.BatchNorm2d(channels),)self.sigmoid = nn.Sigmoid()def forward(self, x, residual):xa = x + residualxl = self.local_att(xa)xg = self.global_att(xa)xlg = xl + xgwei = self.sigmoid(xlg)xi = x * wei + residual * (1 - wei)xl2 = self.local_att2(xi)xg2 = self.global_att(xi)xlg2 = xl2 + xg2wei2 = self.sigmoid(xlg2)xo = x * wei2 + residual * (1 - wei2)return xo

这篇关于Attentional Feature Fusion中所提的注意力模块的代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/412608

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时