只谈代码之用pytorch写一个经常用来测试时序模型的简单常规套路(LSTM多步迭代预测)...

本文主要是介绍只谈代码之用pytorch写一个经常用来测试时序模型的简单常规套路(LSTM多步迭代预测)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

就一句话。

不谈感情,只谈代码。

本系列的代码可以当作入门,复习,作为模板修改成自己的,都是可以的。

这个系列会长期更新下去,主要与python,机器学习,数据挖掘,tensorflow,pytorch相关,后期自己准备复习一些java,学习一些go相关也会一起分享。

一来是大家都代码实战的诉求其实是比理论多的多,总会有人在我文章下面问:有代码吗?能给份代码嘛?

说实话,很多代码给不了,也没法给,我不太喜欢这样白嫖,还是希望各位自己去做一些事情,这样才是对自身的要求和提高,也是一个程序员的素养。

二来,也算自己对一些基础的积累和巩固,尽量两天一篇,每天保持对代码的嗅觉。

今天讲的是pytorch框架下,写一个平时常用来测试的小例子,关于时间序列,模型用的最简单的LSTM,多步迭代预测~

前情提要:

【PyTorch修炼】三、先做减法,具体例子带你了解torch使用的基本套路(简单分类和时间序列预测小例子)

【PyTorch修炼】二、带你详细了解并使用Dataset以及DataLoader

【PyTorch修炼】三、先做减法,具体例子带你了解torch使用的基本套路(简单分类和时间序列预测小例子)

1. 导入我们需要用到的包,此教程 包含可视化以及模型训练和测试

import numpy as np
import pandas as pd
import matplotlib.pyplot as pltimport torch
import torch.nn as nn

2. 对于demo,尝试模型,我们可以用自己模拟的数据或者公开数据集,这里为了方便,采用自己模拟sin函数,并可视化

x = torch.linspace(0, 999, 1000)
y = torch.sin(x*2*3.1415926/70)
plt.xlim(-5, 1005)
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.title("sin")
plt.plot(y.numpy(), color='#800080')
plt.show()
5ea57435f93537b8cf10934bdef760df.png

3. 分训练集和测试集,并且需要对数据进行time windows分割

# len(test):50 
train_y= y[:-70]
test_y = y[-70:]

滑窗创建数据集

def create_data_seq(seq, time_window):out = []l = len(seq)for i in range(l-time_window):x_tw = seq[i:i+time_window]y_label = seq[i+time_window:i+time_window+1]out.append((x_tw, y_label))return out
time_window = 60
train_data = create_data_seq(train_y, time_window)

4. 定义lstm模型

https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html#torch.nn.LSTM

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear

【Deep Learning】通俗大白话详述RNN理论和LSTM理论

【Deep Learning】详细解读LSTM与GRU单元的各个公式和区别

class MyLstm(nn.Module):def __init__(self, input_size=1, hidden_size=128, out_size=1):super(MyLstm, self).__init__()self.hidden_size = hidden_sizeself.lstm = nn.LSTM(input_size=input_size, hidden_size=self.hidden_size, num_layers=1, bidirectional=False)self.linear = nn.Linear(in_features=self.hidden_size, out_features=out_size, bias=True)self.hidden_state = (torch.zeros(1, 1, self.hidden_size), torch.zeros(1, 1, self.hidden_size))def forward(self, x):out, self.hidden_state = self.lstm(x.view(len(x), 1, -1), self.hidden_state)pred = self.linear(out.view(len(x), -1))return pred[-1]

5. 训练准备工作

(1) 超参数

(2) 定义loss,优化器,实例化模型

(3) 训练模型,为了更加直观,加入对test_y的预测最终可视化

learning_rate = 0.00001
epoch = 10
multi_step = 70
model = MyLstm()
mse_loss = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, betas=(0.5,0.999))device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model.to(device)
for i in range(epoch):for x_seq, y_label in train_data:x_seq = x_seq.to(device)y_label = y_label.to(device)model.hidden_state = (torch.zeros(1, 1, model.hidden_size).to(device), torch.zeros(1, 1, model.hidden_size).to(device))pred = model(x_seq)loss = mse_loss(y_label, pred)optimizer.zero_grad()loss.backward()optimizer.step()print(f"Epoch {i} Loss: {loss.item()}")preds = []labels = []preds = train_y[-time_window:].tolist()for j in range(multi_step):test_seq = torch.FloatTensor(preds[-time_window:]).to(device)with torch.no_grad():model.hidden_state = (torch.zeros(1, 1, model.hidden_size).to(device), torch.zeros(1, 1, model.hidden_size).to(device))preds.append(model(test_seq).item())loss = mse_loss(torch.tensor(preds[-multi_step:]), torch.tensor(test_y))print(f"Performance on test range: {loss}")plt.figure(figsize=(12,4))plt.xlim(700,999)plt.grid(True)plt.plot(y.numpy(),color='#8000ff')plt.plot(range(999-multi_step,999),preds[-multi_step:],color='#ff8000')plt.show()

结果

0a6e22e56e2b1d6e2dfca926e85bbc71.png 71a8cf5a501e2c36e737f188add823ba.png完整代码:https://github.com/chehongshu/AIwoniuche_Learning/blob/master/Pytorch_LSTM_examples/demo-timeseries.ipynb

这篇关于只谈代码之用pytorch写一个经常用来测试时序模型的简单常规套路(LSTM多步迭代预测)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/412386

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

使用PyQt5编写一个简单的取色器

《使用PyQt5编写一个简单的取色器》:本文主要介绍PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16进制颜色编码,一款跟随鼠标刷新图像的RGB和16... 目录取色器1取色器2PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是