【机器学习】西瓜书习题3.3Python编程实现对数几率回归

2023-11-22 13:51

本文主要是介绍【机器学习】西瓜书习题3.3Python编程实现对数几率回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3.3 编程实现对数几率回归

参考代码
结合自己的理解,添加注释。

代码

  1. 导入相关的库
import numpy as np
import pandas as pd
import matplotlib
from matplotlib import pyplot as plt
from sklearn import linear_model
  1. 导入数据,进行数据处理和特征工程
# 1.数据处理,特征工程
data_path = 'watermelon3_0_Ch.csv'
data = pd.read_csv(data_path).values
# 取所有行的第10列(标签列)进行判断
is_good = data[:,9] == '是'
is_bad = data[:,9] == '否'
# 按照数据集3.0α,强制转换数据类型
X = data[:,7:9].astype(float)
y = data[:,9]
y[y=='是'] = 1
y[y=='否'] = 0
y = y.astype(int)
  1. 定义若干需要使用的函数
    y = 1 1 + e − x y= \frac{1}{1+e^{-x}} y=1+ex1
def sigmoid(x):"""构造对数几率函数,它是一种sigmoid函数"""s = 1/(1+np.exp(-x))return s

ℓ ( β ) = ∑ i = 1 m ( − y i β T x ^ i + l n ( 1 + e β T x ^ i ) ) \ell(\beta) = \sum_{i=1}^{m}(-y_{i}\beta^{T} \hat{x}_{i} + ln(1+e^{\beta^{T} \hat{x}_{i}})) (β)=i=1m(yiβTx^i+ln(1+eβTx^i))

def J_cost(X,y,beta):""":param X:  sample array, shape(n_samples, n_features):param y: array-like, shape (n_samples,):param beta: the beta in formula 3.27 , shape(n_features + 1, ) or (n_features + 1, 1):return: the result of formula 3.27"""# 构造x_hat,np.c_ 用于连接两个矩阵,规模是(X.row行,X.column+1列)X_hat = np.c_[X, np.ones((X.shape[0],1))]# β和y均reshape为1列,规模是(X.column+1行,1列)beta = beta.reshape(-1,1)y = y.reshape(-1,1)# 计算最大化似然函数的相反数L_beta = -y * np.dot(X_hat,beta) + np.log(1+np.exp(np.dot(X_hat,beta)))# 返回式3.27的结果return  L_beta.sum()

β = ( w ; b ) \beta = (w; b) β=(w;b)

def initialize_beta(column):"""初始化β,对应式3.26的假设,规模是(X.column+1行,1列),x_hat规模是(17行,X.column+1列)"""# numpy.random.randn(d0,d1,…,dn)# randn函数返回一个或一组样本,具有标准正态分布。标准正态分布又称为u分布,是以0为均值、以1为标准差的正态分布,记为N(0,1)# dn表格每个维度# 返回值为指定维度的arraybeta = np.random.randn(column+1,1)*0.5+1return beta

∂ ℓ ( β ) ∂ β = − ∑ i = 1 m x ^ i ( y i − p 1 ( x ^ i ; β ) ) \frac{\partial \ell(\beta)}{\partial \beta} = -\sum_{i=1}^{m}\hat{x}_{i}(y_{i}-p_{1}(\hat{x}_{i};\beta)) β(β)=i=1mx^i(yip1(x^i;β))

def gradient(X,y,beta):"""compute the first derivative of J(i.e. formula 3.27) with respect to beta      i.e. formula 3.30计算式3.27的一阶导数----------------------------------------------------:param X: sample array, shape(n_samples, n_features):param y: array-like, shape (n_samples,):param beta: the beta in formula 3.27 , shape(n_features + 1, ) or (n_features + 1, 1):return:"""# 构造x_hat,np.c_ 用于连接两个矩阵,规模是(X.row行,X.column+1列)X_hat = np.c_[X, np.ones((X.shape[0],1))]# β和y均reshape为1列,规模是(X.column+1行,1列)beta = beta.reshape(-1,1)y = y.reshape(-1,1)# 计算p1(X_hat,beta)p1 = sigmoid(np.dot(X_hat,beta))gra = (-X_hat*(y-p1)).sum(0)return gra.reshape(-1,1) 

∂ 2 ℓ ( β ) ∂ β ∂ β T = ∑ i = 1 m x ^ i x ^ i T p 1 ( x ^ i ; β ) ( 1 − p 1 ( x ^ i ; β ) ) \frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T} = \sum_{i=1}^{m}\hat{x}_{i}\hat{x}_{i}^Tp_{1}(\hat{x}_{i};\beta)(1-p_{1}(\hat{x}_{i};\beta)) ββT2(β)=i=1mx^ix^iTp1(x^i;β)(1p1(x^i;β))

def hessian(X,y,beta):'''compute the second derivative of J(i.e. formula 3.27) with respect to beta      i.e. formula 3.31计算式3.27的二阶导数----------------------------------:param X: sample array, shape(n_samples, n_features):param y: array-like, shape (n_samples,):param beta: the beta in formula 3.27 , shape(n_features + 1, ) or (n_features + 1, 1):return:'''# 构造x_hat,np.c_ 用于连接两个矩阵,规模是(X.row行,X.column+1列)X_hat = np.c_[X, np.ones((X.shape[0],1))]# β和y均reshape为1列,规模是(X.column+1行,1列)beta = beta.reshape(-1,1)y = y.reshape(-1,1)# 计算p1(X_hat,beta)p1 = sigmoid(np.dot(X_hat,beta))m,n=X.shape# np.eye()返回的是一个二维2的数组(N,M),对角线的地方为1,其余的地方为0.P = np.eye(m)*p1*(1-p1)assert P.shape[0] == P.shape[1]# X_hat.T是X_hat的转置return np.dot(np.dot(X_hat.T,P),X_hat)

使用梯度下降法求解

def update_parameters_gradDesc(X,y,beta,learning_rate,num_iterations,print_cost):"""update parameters with gradient descent method"""for i in range(num_iterations):grad = gradient(X,y,beta)beta = beta - learning_rate*grad# print_cost为true时,并且迭代为10的倍数时,打印本次迭代的costif (i%10==0)&print_cost:print('{}th iteration, cost is {}'.format(i,J_cost(X,y,beta)))return betadef logistic_model(X,y,print_cost=False,method='gradDesc',learning_rate=1.2,num_iterations=1000):""":param method: str 'gradDesc'or'Newton'"""# 得到X的规模row,column = X.shape# 初始化βbeta = initialize_beta(column)if method == 'gradDesc':return update_parameters_gradDesc(X,y,beta,learning_rate,num_iterations,print_cost)elif method == 'Newton':return update_parameters_newton(X,y,beta,print_cost,num_iterations)else:raise ValueError('Unknown solver %s' % method)
  1. 可视化结果
# 1.可视化数据点
# 设置字体为楷体
matplotlib.rcParams['font.sans-serif'] = ['KaiTi']
plt.scatter(data[:, 7][is_good], data[:, 8][is_good], c='b', marker='o') #c参数是颜色,marker是标记
plt.scatter(data[:, 7][is_bad], data[:, 8][is_bad], c='r', marker='x')
# 设置横轴坐标标题
plt.xlabel('密度')
plt.ylabel('含糖量')# 2.可视化自己写的模型
# 学习得到模型
beta = logistic_model(X,y,print_cost=True,method='gradDesc',learning_rate=0.3, num_iterations=1000)
# 得到模型参数及偏置(截距)
w1, w2, intercept = beta
x1 = np.linspace(0, 1)
y1 = -(w1 * x1 + intercept) / w2
ax1, = plt.plot(x1, y1, label=r'my_logistic_gradDesc')# 3.可视化sklearn的对率回归模型,进行对比
lr = linear_model.LogisticRegression(solver='lbfgs', C=1000)  # 注意sklearn的逻辑回归中,C越大表示正则化程度越低。
lr.fit(X, y)
lr_beta = np.c_[lr.coef_, lr.intercept_]
print(J_cost(X, y, lr_beta))
# 可视化sklearn LogisticRegression 模型结果
w1_sk, w2_sk = lr.coef_[0, :]
x2 = np.linspace(0, 1)
y2 = -(w1_sk * x2 + lr.intercept_) / w2
ax2, = plt.plot(x2, y2, label=r'sklearn_logistic')
plt.legend(loc='upper right')
plt.show()

可视化结果如下:
在这里插入图片描述

这篇关于【机器学习】西瓜书习题3.3Python编程实现对数几率回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410600

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time