Self-Supervised Exploration via Disagreement论文笔记

2023-11-21 21:12

本文主要是介绍Self-Supervised Exploration via Disagreement论文笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通过分歧进行自我监督探索

0、问题

使用可微的ri直接去更新动作策略的参数的,那是不是就不需要去计算价值函数或者critic网络了?

1、Motivation

高效的探索是RL中长期存在的问题。以前的大多数方式要么陷入具有随机动力学的环境,要么效率太低,无法扩展到真正的机器人设置。

2、Introduction

然而,在学习无噪声模拟环境之外的预测模型时,有一个关键的挑战:如何处理代理-环境交互的随机性? 随机性可能由以下几个来源引起:(1)嘈杂的环境观察(例如,电视播放噪声);(2)智能体动作执行中的噪声(例如,滑动);(3)作为智能体动作输出的随机性(例如,智能体抛硬币)。

尽管有几种方法可以在低维状态空间中构建随机模型,但将其扩展到高维输入(例如图像)仍然具有挑战性。另一种方法是建立确定性模型,但在随机不变的特征空间中对输入进行编码。最近的工作提出在逆模型特征空间中构建这样的模型,它可以处理随机观测,但当代理本身是噪源时(例如带有遥控器的电视)会失败。

文章提出训练前向动力学模型的集合,并激励智能体探索该集合中模型预测之间存在最大分歧或方差的动作空间。

3、方法

该模型利用预测的不确定性来激励策略访问不确定性最大的状态。

本文模型的核心思想是:歧义

模型利用采样到的transitions,训练一批前向模型:
{ f θ 1 , f θ 2 … , f θ k } \{f_{\theta_1},f_{\theta_2}\ldots,f_{\theta_k}\} {fθ1,fθ2,fθk}
这个前向模型与ICM中的forward dynamics model一致,通过最小化loss来更新参数:
l o s s = ∥ f ( x t , a t ; θ ) − x t + 1 ∥ 2 loss=\begin{aligned}\|f(x_t,a_t;\theta)-x_{t+1}\|_2\end{aligned} loss=f(xt,at;θ)xt+12
而本文提出的歧义的核心思想是,对于智能体已经很好地探索过的状态空间,将会收集到足够的数据来训练所有模型,从而导致模型之间的一致,而对于新领域和未探索的领域,所有模型仍然具有很高的预测误差,从而导致对下一个状态预测的分歧。

本文模型将intrinsic reward定义为这种分歧,即不同模型的输出之间的方差:
r t i ≜ E θ [ ∥ f ( x t , a t ; θ ) − E θ [ f ( x t , a t ; θ ) ] ∥ 2 2 ] \begin{aligned}r_t^i\triangleq\mathbb{E}_\theta\Big[\|f(x_t,a_t;\theta)-\mathbb{E}_\theta[f(x_t,a_t;\theta)]\|_2^2\Big]\end{aligned} rtiEθ[f(xt,at;θ)Eθ[f(xt,at;θ)]22]
在实践中,为了所有的预测目的,我们将状态x编码到嵌入空间φ(x)中。

在这里插入图片描述

本文提出的智能体代理是自我监督的,不需要任何外部奖励来进行探索。

本文方法与ICM不同,ICM在足够大的样本后,将趋于平均值。由于均值不同于个体的真实随机状态,预测误差仍然很高,使得智能体永远对随机行为感到好奇。

本模型提出的内在奖励作为一个可微函数,以便使用似然最大化来执行策略优化,这很像监督学习而不是强化学习。来自模型的内在奖励可以非常有效地通知智能体在前向预测损失高的方向改变其行动空间,而不是像强化学习那样提供标量反馈。纯粹是基于当前状态和智能体预测动作的模型集合的心理模拟。

与其通过PPO (RL)最大化期望中的内在奖励,我们可以通过将ri 视为可微损失函数来使用直接梯度来优化策略参数θ:
min ⁡ θ 1 , … , θ k ( 1 / k ) ∑ i = 1 k ∥ f θ i ( x t , a t ) − x t + 1 ∥ 2 \begin{aligned}\min_{\theta_1,\dots,\theta_k}&(1/k)\sum_{i=1}^k\|f_{\theta_i}(x_t,a_t)-x_{t+1}\|_2\end{aligned} θ1,,θkmin(1/k)i=1kfθi(xt,at)xt+12

max ⁡ θ P ( 1 / k ) ∑ i = 1 k [ ∥ f θ i ( x t , a t ) − ( 1 / k ) ∑ j = 1 k f θ j ( x t , a t ) ∥ 2 2 ] \begin{aligned}\max_{\theta_P}&(1/k)\sum_{i=1}^k\left[\|f_{\theta_i}(x_t,a_t)-(1/k)\sum_{j=1}^kf_{\theta_j}(x_t,a_t)\|_2^2\right]\end{aligned} θPmax(1/k)i=1k[fθi(xt,at)(1/k)j=1kfθj(xt,at)22]

a t = π ( x t ; θ P ) a_t=\pi(x_t;\theta_P) at=π(xt;θP)

4、实验

实验包括三个部分:a)验证在标准非随机环境下的性能; B)在过渡动力学和观测空间中具有随机性的环境的比较; c)验证我们的目标所促进的可微分政策优化的效率。

  1. 设计实验测试了Disagreement方法在标准非随机环境下的性能。比较了雅达利游戏的近确定性和非随机标准基准的不同内在奖励公式。基于分歧的方法优于最先进的方法,而不会在非随机情况下失去准确性。
  2. 在随机性较高的环境下进行测试,基于集合的分歧方法在智能体看到足够的样本后,收敛到几乎为零的内在奖励,而基于预测误差的模型在收敛时也会为具有较高随机性的观测值(即标签为1的图像)分配更多的奖励。基于分歧的方法在存在随机性的情况下表现更好。
  3. 实验显示可微探索加速了智能体的学习,表明了直接梯度优化的有效性。现在在短期和大结构的行动空间设置中评估仅可微分探索(无强化)的性能。
    实验显示可微探索加速了智能体的学习,表明了直接梯度优化的有效性。现在在短期和大结构的行动空间设置中评估仅可微分探索(无强化)的性能。
  4. 在真实世界的机器手臂实验上,基于分歧的可微分策略优化探索展示出了极高的性能。

这篇关于Self-Supervised Exploration via Disagreement论文笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/405147

相关文章

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi