当城市拿起神经网络的“剧本”,传感器应该扮演何种角色?

2023-11-21 14:20

本文主要是介绍当城市拿起神经网络的“剧本”,传感器应该扮演何种角色?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=gif 640?wx_fmt=jpeg

我们已经讨论过很多关于智能城市的话题。越来越多的科技企业加入这个产业大命题,从无人驾驶、车路协同,再到城市大脑,一系列软硬件要素蓬勃而出,誓要让交通生活旧貌换新颜。


截至2018年底,我国智能交通千万级以上的项目(不含公路信息化)就有1167个。


然而,就在大家普遍在对车与路的故事满怀期待的时候,整合时期的诸多“适应症”也开始出现。无人驾驶汽车事故屡见不鲜,云端大脑在庞大的数据体量面前压力山大,研发和基建成本居高不下,但城市交通效率却并没有成比例提升。


如果把智慧交通比作城市未来的一出好戏,那么,目前已经完成了前期的筹备工作。核心班底不外是云端大脑、芯片、传感器、摄像头,臣妾都说腻了。至于最终向市民呈现出怎样的作品,还要看导演如何让角色们拿起正确的剧本、奉献出最好的演技了。


640?wx_fmt=png


于是,我们和专注于高端传感器、MEMS芯片及系统的西人马聊了聊,探讨了一下在智慧城市这部鸿篇巨制中,传感器都承担了哪些戏份。


(注:西人马集团是MEMS芯片和传感技术的领跑者,具有MEMS芯片及传感器设计、制造、测试、材料合成等全方位能力,拥有强大的自主核心技术实力)


数据织就的“城市神经网”,

隐藏了几个重要的出行bug


在传感器开始它的表演之前,我们要先帮城市的神经网络“捉捉虫”,找出那些影响感知和决策的大小bug。


在城市的数字基础建设过程中,每天有大量的传感器和系统落地。但这些终端数据距离真正服务于城市大脑,却存在着几个障碍:


1.数据收集的完整性。现代化城市和人们的出行轨迹往往围绕着复杂而紧密的交通网络展开。一方面,这要求城市系统能够覆盖到每一个边边角角,构成完整而庞大的“神经网络”;另一方面,高速流动的车流、人流对数据采集的实时性、精度也提出了挑战。如果数据出现了“盲点”,那么即使拥有再强大的城市大脑,交通拥堵、地面安全等问题也依然是“死结”。


2.数据协作的兼容性。城市数据的另一个问题,是数据源的多种类、多模态。比如仅仅是解决堵车的问题,就需要路面的车流量数据、车辆GPS数据、天气预报、路况健康监测数据等等,只有将不同种类的传感器融合,把各数据源捏合在一起,才能够实现对交通状况的实时把握和调控,主动影响智慧决策。


640?wx_fmt=png


3.数据处理的高效率。目前许多城市的数据收集方案,都是通过摄像头、通讯基站等方式实现的。这就导致了两个问题:一是摄像头的视觉数据需要进行语义分析、特征提取、图像理解等一系列处理,对算力资源、硬件配置、数据存储等提出了较高的要求;二是大规模的实时高精视觉数据一股脑儿地输送到云端,很容易造成数据堆积和处理延迟,成为“城市大脑”的重担,耽误一些需要实时反应的需求。


归根结底,城市的智慧化不应该只停留在“被数字”的表面功夫,而应该真正让城市的每一寸肌理都能够感知数据、应用数据,这样任何地面事件带来的每一个“神经冲动”,才能快速而顺利地抵达城市“大脑中枢”。


将城市道路变成神经网络:

西人马的脑洞与逻辑


关于城市数据体系的建构,目前还没有什么“基本法”,参与者都在各自摸索。其中,西人马的智慧交通系统,已经担任起了许多城市的“神经网络”建构工作。


对于城市交通领域的数据难题,显然不是单一的软硬件所能够解决的。因此,西人马神行网络将数据网也拆解成了三个步骤:


第一步:多模态传感器的全面铺设;


第二步:多模组监测的综合解决方案;


第三步:车人路联动的真·智慧交通。


首先是数据感知网络。前面我们提到,城市智慧交通最突出的问题就是采集方式和种类单一,导致数据的维度和精度不够,无法照顾到庞大的细节角落。


基于此,西人马智慧交通系统将交通神经网络进行了从顶层设计到终端布局的系统设计。体现到具体的硬件部署上,就是将多模态的传感器结合各类数据采集模块,对城市道路进行因地制宜的综合改造。


比如通过路灯传感器,对路面的人和物实现10cm的高精度定位;在地面设置磁坐标,可以对车辆每10cm的移动都了如指掌;在隧道等复杂结构环境中,则采用了超声波测距仪、静力水准仪、裂缝传感器、振弦采集仪等传感器综合做功,并结合车联网,对交通出行所需要的数据进行了深层次、多模态的系统收集,让外部刺激的每一丝“神经冲动”,都能够被城市以立体的方式感知到。


640?wx_fmt=png


然后是场景化的多模组监测方案。


这部分有点像神经网络的大脑分区,数据感知网络与处理模块一起,构成了垂直场景的监测模组,提供清晰而具体的能力。


目前,西人马智慧交通系统可以为用户提供定位导航、通讯传输、气候监测、桥梁监控监测、隧道监控监测、地质灾害监测等不同模块的服务。


以地灾模组为例,西人马智慧交通系统在边坡等道路环境上部署了传感器、数据采集、数据传输等子系统,对自然灾害等进行实时监测。这些数据会实时上传到数据库和处理控制中心,一旦出现异常状况,就能够根据实际情况进行安全评价,预警子系统在向上发出分级预警,从而达到监控边坡安全、及时消除安全隐患的功能。


640?wx_fmt=png


最后,就需要将路、车、人等不同的“子模块”联动起来,形成一个细节明确、功能多元、场景丰富的完整城市数字体系。再借助超级计算机的磅礴算力, 完成城市交通的智能管理。


就拿最常见的“城市病”——交通拥堵来说,一旦道路、基建、人、车都被城市神经网络连通起来,那么一旦周边车辆发生异变,车与车之间的感应就会实时开启。特殊气候、网络失联、车流异常等外界环境的变化,都能够及时被无处不在的传感器网络所感知和处理,再借由城市大脑将指示传递给车主,进行合理避障。这样的无死角的城市网络,自然就不会再轻易就“心肌梗塞”了。


如此看来,从神经突触(传感器系统),到独立脑区(垂直模块),再到城市大脑(智慧交通系统),西人马智慧交通系统正是通过这样环环相扣的勾画,让真正的智慧城市更早地来到我们身边。


城市智能化道路上,

传感器的角色扮演


至此,数据、智能与城市,完成了一次软硬件一体化的深度结合。那么,我们不妨简单总结一下,在智慧城市的建构过程中,传感器系统应该扮演哪些角色?


1.规划师


在西人马智慧交通系统的部署细节中,我们会发现,传感器系统并不仅仅是在机械执行道路改造工作,而是充分结合城市交通发展中的实际问题,通过数字化、智能化的手段,去应对复杂而多变的交通状况。


换句话说,一个优秀的数据规划师,才能让城市生活变得真实可感,进而从全局提升城市服务能力。


640?wx_fmt=png


2.守护者


城市数字化吸引了无数厂商来分一杯羹,但芯片厂商、基建企业、数据维护等各自为政,由此带来的数据断层、协作失调,却是埋伏在城市神经网络上的“隐藏杀手”。


而最最基础的传感器网络,则可以从最广阔的数据维度上,将车与车、车与人、车与网统一整合在一起。


就像西人马智慧交通系统,在环境不好的前提下,可以通过信号灯状态、天气监测、隧道健康监测、厘米级磁栅等综合做功,来解决车辆可能遭遇的通讯、定位、导航等诸多问题。


正是这样细致到“毛细血管”级别的统一数据系统,才能够最大限度地保障行车安全。

640?wx_fmt=png


3.深耕者


在现实的交通网络中,存在着许多垂直而细分的小环境,每个结构都有着各自特殊的部署需求,对此估计不足很有可能在道路软硬件改造上顾此失彼,让车辆上了路也走不远、走不快。


对此,西人马将桥梁、隧道、边坡灾害等特殊的公路场景都进行了缜密而细致的部署。基于此,自动驾驶、车路协同等技术才能真正走出试验场,让大家看到真实的价值。

 

目前看来,城市必须以全面统一布局和垂直场景落地来双面进击,才能真正实现智慧的觉醒。


因此,多模态、多种类传感器的综合部署、协同作战,也就变得至关重要。否则,城市道路的众多节点只能像偏瘫患者一样,肢体再如何动作,都难以被大脑所精准感知。


或许未来我们回顾中国城市的智慧化进程时,会发现当西人马这样的终端奠基者投身其中,凿开了一个个“神经元”、搭建了一根根数字管道,才让智慧开始在城市中流动、传导、撞击,最终萌生出前所未有的智慧。


只有每一个关键角色都认真对待属于自己的时代剧本,城市文明最值得骄傲的智慧大戏,才能真正拉开序幕。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=gif

640?wx_fmt=jpeg

这篇关于当城市拿起神经网络的“剧本”,传感器应该扮演何种角色?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/402882

相关文章

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

简单的角色响应鼠标而移动

actor类 //处理移动距离,核心是找到角色坐标在世界坐标的向量的投影(x,y,z),然后在世界坐标中合成,此CC是在地面行走,所以Y轴投影始终置为0; using UnityEngine; using System.Collections; public class actor : MonoBehaviour { public float speed=0.1f; CharacterCo

编程应该用 Mac 还是 PC ?

『有人的地方,就有江湖』—徐克。笑傲江湖。     序     一个竞争的市场,就会有对立的产生,这世界存在著很多不同的领域,领域好比是个江湖的缩影,因此就有许多门派的纷争,例如说浏览器领域有著最大宗的IE派,门派成长速度飞快,武功版号跳的跟台湾物价指数一样快的Chrome门,不断被模仿,一直被超越的Opera派;韧性极强,一直对抗几大势力的Firefox派等等,程序语言也有自己的领域

机器学习之监督学习(三)神经网络

机器学习之监督学习(三)神经网络基础 0. 文章传送1. 深度学习 Deep Learning深度学习的关键特点深度学习VS传统机器学习 2. 生物神经网络 Biological Neural Network3. 神经网络模型基本结构模块一:TensorFlow搭建神经网络 4. 反向传播梯度下降 Back Propagation Gradient Descent模块二:激活函数 activ

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

图神经网络(2)预备知识

1. 图的基本概念         对于接触过数据结构和算法的读者来说,图并不是一个陌生的概念。一个图由一些顶点也称为节点和连接这些顶点的边组成。给定一个图G=(V,E),  其 中V={V1,V2,…,Vn}  是一个具有 n 个顶点的集合。 1.1邻接矩阵         我们用邻接矩阵A∈Rn×n表示顶点之间的连接关系。 如果顶点 vi和vj之间有连接,就表示(vi,vj)  组成了