全球地表水年度数据集JRC Yearly Water Classification History, v1.4数据集

本文主要是介绍全球地表水年度数据集JRC Yearly Water Classification History, v1.4数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介:

JRC Yearly Water Classification History, v1.4是一个对全球水资源进行分类的数据集,覆盖了1984年至2019年的时间范围。该数据集是由欧盟联合研究中心(JRC)开发的,使用的数据源是来自Landsat系列卫星的高分辨率图像。数据集根据水体的类型和水体覆盖的百分比进行分类,包括河流、湖泊、人工水体和沼泽等。前言 – 人工智能教程

JRC Yearly Water Classification History, v1.4可以用于分析全球水资源的变化趋势,比如城市化和气候变化对水体的影响等。它也可以被用于编制水资源管理计划和预测洪水和干旱等自然灾害的发生概率。该数据集可以在JRC的网站上免费下载和使用。

JRC Yearly Water Classification History产品,是利用1984至2020年获取的landsat5、landsat7和landsat8的卫星影像,生成的一套分辨率为30米的年度全球地表水体分类地图集。该数据集将水体共分为四类:无数据、非水体、间歇性水体和永久性水体。用户可以在全球尺度上按地区回溯某年地表水体的分类情况。 

长时序地表水观测具有重要的意义,包括以下几个方面:

1. 研究气候变化影响地表水循环的过程和机制:长时序地表水观测可以提供准确的水文数据,帮助科学家研究气候变化对地表水循环的影响,包括降水、蒸散发、径流等,有助于推理水资源的变化趋势。

2. 检测地表水资源的变化趋势:长时间序列观测数据能够反映出地表水资源的变化趋势,包括变化的周期、变化的单调性、变化速率等,有助于发现地表水资源的威胁和机会,以及制定水资源的管理计划。

3. 评估水资源利用的可行性:长时间序列观测能够提供水资源的质量和量的信息,有助于科学家评估水资源的利用的可行性,包括是否能够满足人类需求以及是否拥有足够的水资源来支持其生态系统的健康。

4. 引导水资源管理决策和政策制定:长时间序列观测数据能够为水资源管理提供可靠的数据基础,帮助政策制定者和决策者制定具有前瞻性和可持续性的水资源管理计划,从而提升水资源的管理效率和保障水资源的可持续利用。

数据集ID: 

GSW1_4/YearlyClassification

时间范围: 1984年-2020年

范围: 全球

来源: EC JRC/Google

复制代码段: 

var images = pie.ImageCollection("GSW1_4/YearlyClassification")

名称类型空间分辨率(m)无效值描述信息
waterbyte30255全年水的季节性分类:
  • 0:No data
  • 1:Not water
  • 2:Seasonal water
  • 3:Permanent water

 

代码:

/*** @File    :   GlobalSurfaceWater* @Time    :   2022/3/29* @Author  :   piesat* @Version :   1.0* @Contact :   400-890-0662* @License :   (C)Copyright 航天宏图信息技术股份有限公司* @Desc    :   加载JRC Yearly Water Classification History, v1.4数据集*///加载JRC Yearly Water Classification History, v1.4数据集
var dataset = pie.ImageCollection('GSW1_4/YearlyClassification').filterDate("2015","2016").select("water")
print("dataset",dataset);//设置预览参数
var visualization = {min: 0.0,max: 3.0,palette: ['cccccc', 'ffffff', '99d9ea', '0000ff']
};//定位地图中心及缩放级别
Map.setCenter(117.7, 33.41, 7);//加载显示影像
Map.addLayer(dataset, visualization,"dataset")

数据引用:Jean-Francois Pekel, Andrew Cottam, Noel Gorelick, Alan S. Belward, High-resolution mapping of global surface water and its long-term changes. Nature 540, 418-422 (2016). (doi:10.1038/nature20584)

这篇关于全球地表水年度数据集JRC Yearly Water Classification History, v1.4数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/401675

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram