Arduino程序设计(四)按键消抖+按键计数

2023-11-21 01:50

本文主要是介绍Arduino程序设计(四)按键消抖+按键计数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

按键消抖+按键计数

  • 前言
  • 一、按键消抖
  • 二、按键计数
    • 1、示例代码
    • 2、按键计数实验
  • 参考资料


前言

  • 本文主要介绍两种按键控制LED实验:
  • 第一种是采用软件消抖的方法检测按键按下的效果;
  • 第二种是根据按键按下次数,四个LED灯呈现不同的流水灯效果。

一、按键消抖

  • 按键在按下时,由于机械和物理特定的原因,经常会产生一些开关变换,而这些变换会让程序误认为是短时间内进行了多次按键。
  • 如何对输入信号进行消抖?也就是在一段短时间内进行两次检查来确保按键确实被按下。如果没有消抖的话,按下一次按键会产生很多不可预知的结果。
  • 所以Arduino按键消抖是为了解决按键在物理接触瞬间可能产生多次触发的现象。
  • 下面介绍两种常见的按键消抖方法:
  • ① 使用外部电容(硬件消抖):通过在按键引脚和地之间并联一个适当大小的电容(例如:MCU复位电路采用0.1uF陶瓷电容),减少了按键连接和断开时产生的电压突变,同时也可以减少按键在短时间内多次触发的可能性。MCU复位电路如下图所示:
    在这里插入图片描述
  • ② 软件消抖:利用Arduino的延时函数或计时器来检测按键状态的变化,只有在按键状态保持一段时间后才认为按键有效。例如,当检测到按键按下时,可以设定一个延时时间,在延时时间内如果检测到按键保持按下状态,则认为按键有效。

按键消抖实验:

  • 1、本实验采用Arduino UNO R3开发板及自主搭建电路的方式,实现预设功能。

  • 2、按键消抖的电路图如下图所示:
    在这里插入图片描述

  • 3、功能实现:按下一个按键,控制LED灯亮50ms然后熄灭。

  • 4、实验要求:采用延时消抖(方法1),编写按键扫描程序(方法2),计数器消抖(方法3)三种按键消抖方式实现功能。

代码实现(方法1):

//延时消抖,按键控制LED
//按下一个按键,控制LED灯亮50ms然后熄灭int buttonPin = 7;
int ledPin = 12;void setup() {pinMode(buttonPin, INPUT_PULLUP);pinMode(ledPin, OUTPUT);}
void loop() {if (digitalRead(buttonPin) == LOW){delay(10);if (digitalRead(buttonPin) == LOW){digitalWrite(ledPin, HIGH);delay(50);digitalWrite(ledPin, LOW);while (digitalRead(buttonPin) == LOW);}}
}

代码实现(方法2):

//编写按键扫描程序,实现按键消抖
//按下一个按键,控制LED灯亮50ms然后熄灭#define LED 12
#define KEY 7int KEY_NUM = 0;                   //按键键值存放变量,不等于1说明有按键按下void setup()
{pinMode(LED, OUTPUT);         //定义LED为输出引脚pinMode(KEY, INPUT_PULLUP);   //定义KEY为带上拉输入引脚
}void loop()
{ScanKey();                   //按键扫描程序,当按键按下时候,该子程序会修改KEY_NUM的值if (KEY_NUM == 1)            //是否按键按下{digitalWrite(LED, HIGH);delay(50);digitalWrite(LED, LOW);}
}void ScanKey()                        //按键扫描程序
{KEY_NUM = 0;                        //清空变量if (digitalRead(KEY) == LOW)        //有按键按下{delay(10);                        //延时去抖动if (digitalRead(KEY) == LOW)      //有按键按下{KEY_NUM = 1;                    //变量设置为1while (digitalRead(KEY) == LOW); //等待按键松手}}
}

代码实现(方法3):

//计数器消抖,按键控制LED
//按下一个按键,控制LED灯亮50ms然后熄灭const int buttonPin = 7;  // 按键引脚
const int ledPin = 12;    //LED引脚int buttonState = HIGH;   // 按键状态
int lastButtonState = HIGH;  // 上一次的按键状态
unsigned long lastDebounceTime = 0;  // 上一次的触发时间
unsigned long debounceDelay = 10;    // 消抖延时void setup() {pinMode(buttonPin, INPUT_PULLUP);pinMode(ledPin,OUTPUT);
}void loop() {int reading = digitalRead(buttonPin);  // 读取按键引脚状态// 如果当前状态与上一次状态不同,更新上一次状态和触发时间if (reading != lastButtonState) {lastDebounceTime = millis();}// 如果经过了消抖延时,且当前状态与按键状态不同,更新按键状态if ((millis() - lastDebounceTime) > debounceDelay) {if (reading != buttonState) {buttonState = reading;// 按键按下时执行的操作if (buttonState == HIGH) {digitalWrite(ledPin, HIGH);delay(50);digitalWrite(ledPin, LOW);}}}lastButtonState = reading;
}

二、按键计数

1、示例代码

  • 使用Arduino来实现按键计数。简单的示例代码如下:
//按键计数示例
const int buttonPin = 2;   // 按钮连接到数字引脚2
int buttonState = 0;       // 保存按钮状态
int count = 0;             // 计数器void setup() {pinMode(buttonPin, INPUT);     // 设置按钮引脚为输入模式Serial.begin(9600);            // 打开串口通信
}void loop() {buttonState = digitalRead(buttonPin);   // 读取按钮状态if (buttonState == HIGH) {    // 如果按钮按下count++;                   // 计数器加1Serial.print("Button pressed. Count: ");Serial.println(count);delay(200);                // 等待200毫秒,避免连续多次计数}
}

示例中,我们将一个按钮连接到Arduino的数字引脚2。循环中,我们读取按钮的状态,如果按钮被按下(高电平),计数器就会加1,并通过串口打印出计数器的值。为了避免按钮按下时的抖动,我们在每次计数后延迟200毫秒。

上传这个代码到Arduino板,然后打开串口监视器(波特率设置为9600),当你按下按钮时,你将看到计数器的值递增。

2、按键计数实验

  • (1)本实验采用Arduino UNO R3开发板及自主搭建电路的方式,实现预设功能。

  • (2)按键计数的电路图如下图所示:
    在这里插入图片描述

  • (3)实现功能(基础):

  • ① 第一次按下按键,LED1点亮;

  • ② 第二次按下按键,LED1和LED2点亮;

  • ③ 第三次按下按键,LED1~LED3点亮;

  • ④ 第四次按下按键,LED1~LED4点亮;

  • ⑤ 第五次按下按键,LED1~LED4熄灭;

  • ⑥ 第六次按下按键,重复①现象;

  • ⑦ 第七次按下按键,重复②现象……,以此类推。

代码实现:

//编写按键扫描程序,实现按键计数
/*实验现象:
① 第一次按下按键,LED1点亮;
② 第二次按下按键,LED1和LED2点亮;
③ 第三次按下按键,LED1~LED3点亮;
④ 第四次按下按键,LED1~LED4点亮;
⑤ 第五次按下按键,LED1~LED4熄灭;
⑥ 第六次按下按键,重复①现象;
⑦ 第七次按下按键,重复②现象……,以此类推。
*/const int KEY = 7;      //按键引脚
const int LED1 = 9;     //LED1引脚
const int LED2 = 10;    //LED2引脚
const int LED3 = 11;    //LED3引脚
const int LED4 = 12;    //LED4引脚int KEY_count = 0;      //按键计数void setup()
{pinMode(KEY, INPUT_PULLUP);    //定义KEY为带上拉输入引脚pinMode(LED1, OUTPUT);         //定义LED1为输出引脚pinMode(LED2, OUTPUT);         //定义LED2为输出引脚pinMode(LED3, OUTPUT);         //定义LED3为输出引脚pinMode(LED4, OUTPUT);         //定义LED4为输出引脚
}void loop()
{ScanKey();                   //按键扫描程序,当按键按下时候,该子程序会修改KEY_count的值switch (KEY_count) {case 0:{digitalWrite(LED1, LOW);digitalWrite(LED2, LOW);digitalWrite(LED3, LOW);digitalWrite(LED4, LOW);}break;case 1:{digitalWrite(LED1, HIGH);}break;case 2:{digitalWrite(LED1, HIGH);digitalWrite(LED2, HIGH);}break;case 3:{digitalWrite(LED1, HIGH);digitalWrite(LED2, HIGH);digitalWrite(LED3, HIGH);}break;case 4:{digitalWrite(LED1, HIGH);digitalWrite(LED2, HIGH);digitalWrite(LED3, HIGH);digitalWrite(LED4, HIGH);}break;default:{KEY_count = 0;}}
}void ScanKey()                        //按键扫描程序
{if (digitalRead(KEY) == LOW)        //有按键按下{delay(10);                        //延时去抖动if (digitalRead(KEY) == LOW)      //有按键按下{KEY_count++;                   //按键计数while (digitalRead(KEY) == LOW); //等待按键松手}}
}
  • (4)实现功能(进阶):
  • ① 第一次按下按键,LED1和LED3亮500ms后熄灭,间隔150ms后,LED2和LED4亮150ms后熄灭,间隔150ms后,LED1和LED3亮150ms后熄灭……,重复操作。
  • ② 第二次按下按键,LED1~LED4从左往右依次点亮,等LED4熄灭后,再从左往右依次点亮,重复操作,相邻两个LED灯亮灭的时间间隔为50ms。
  • ③ 第三次按下按键,LED1~LED4从右往左依次点亮,等LED1熄灭后,再从右往左依次点亮,重复操作,相邻两个LED灯亮灭的时间间隔为50ms。
  • ④ 第四次按下按键,LED1~LED4从左往右依次点亮,再从右往左依次点亮,重复操作,相邻两个LED灯亮灭的时间间隔为50ms。
  • ⑤ 第五次按下按键,LED1~LED4熄灭。
  • ⑥ 第六次按下按键,重复①现象
  • ⑦ 第七次按下按键,重复②现象……,以此类推。

代码实现:

//编写按键扫描程序,实现按键计数
//注意:按下按键后,即下一次按下按键前,时间间隔>10s
/*实验现象:① 第一次按下按键,LED1和LED3亮150ms后熄灭,间隔150ms后,LED2和LED4亮150ms后熄灭,间隔150ms后,LED1和LED3亮150ms后熄灭……,重复操作。② 第二次按下按键,LED1~LED4从左往右依次点亮,等LED4熄灭后,再从左往右依次点亮,重复操作,相邻两个LED灯亮灭的时间间隔为50ms。③ 第三次按下按键,LED1~LED4从右往左依次点亮,等LED1熄灭后,再从右往左依次点亮,重复操作,相邻两个LED灯亮灭的时间间隔为50ms。④ 第四次按下按键,LED1~LED4从左往右依次点亮,再从右往左依次点亮,重复操作,相邻两个LED灯亮灭的时间间隔为50ms。⑤ 第五次按下按键,LED1~LED4熄灭。⑥ 第六次按下按键,重复①现象⑦ 第七次按下按键,重复②现象……,以此类推。
*/const int KEY = 7;      //按键引脚
const int LED1 = 9;     //LED1引脚
const int LED2 = 10;    //LED2引脚
const int LED3 = 11;    //LED3引脚
const int LED4 = 12;    //LED4引脚int KEY_count = 0;      //按键计数void setup()
{pinMode(KEY, INPUT_PULLUP);    //定义KEY为带上拉输入引脚pinMode(LED1, OUTPUT);         //定义LED1为输出引脚pinMode(LED2, OUTPUT);         //定义LED2为输出引脚pinMode(LED3, OUTPUT);         //定义LED3为输出引脚pinMode(LED4, OUTPUT);         //定义LED4为输出引脚
}void loop()
{ScanKey();                   //按键扫描程序,当按键按下时候,该子程序会修改KEY_count的值switch (KEY_count) {case 0:{digitalWrite(LED1, LOW);digitalWrite(LED2, LOW);digitalWrite(LED3, LOW);digitalWrite(LED4, LOW);}break;case 1:{//第一次按下按键digitalWrite(LED1, HIGH);digitalWrite(LED2, LOW);digitalWrite(LED3, HIGH);digitalWrite(LED4, LOW);delay(150);digitalWrite(LED1, !digitalRead(LED1));digitalWrite(LED2, !digitalRead(LED2));digitalWrite(LED3, !digitalRead(LED3));digitalWrite(LED4, !digitalRead(LED4));delay(150);}break;case 2:{//刷新LED1~LED4状态digitalWrite(LED1, LOW);digitalWrite(LED2, LOW);digitalWrite(LED3, LOW);digitalWrite(LED4, LOW);//第二次按下按键digitalWrite(LED1, HIGH);delay(50);digitalWrite(LED1, !digitalRead(LED1));digitalWrite(LED2, HIGH);delay(50);digitalWrite(LED2, !digitalRead(LED2));digitalWrite(LED3, HIGH);delay(50);digitalWrite(LED3, !digitalRead(LED3));digitalWrite(LED4, HIGH);delay(50);digitalWrite(LED4, !digitalRead(LED4));delay(50);}break;case 3:{//刷新LED1~LED4状态digitalWrite(LED1, LOW);digitalWrite(LED2, LOW);digitalWrite(LED3, LOW);digitalWrite(LED4, LOW);//第三次按下按键digitalWrite(LED4, HIGH);delay(50);digitalWrite(LED4, !digitalRead(LED4));digitalWrite(LED3, HIGH);delay(50);digitalWrite(LED3, !digitalRead(LED3));digitalWrite(LED2, HIGH);delay(50);digitalWrite(LED2, !digitalRead(LED2));digitalWrite(LED1, HIGH);delay(50);digitalWrite(LED1, !digitalRead(LED1));delay(50);}break;case 4:{//刷新LED1~LED4状态digitalWrite(LED1, LOW);digitalWrite(LED2, LOW);digitalWrite(LED3, LOW);digitalWrite(LED4, LOW);//第四次按下按键digitalWrite(LED1, HIGH);delay(50);digitalWrite(LED1, !digitalRead(LED1));digitalWrite(LED2, HIGH);delay(50);digitalWrite(LED2, !digitalRead(LED2));digitalWrite(LED3, HIGH);delay(50);digitalWrite(LED3, !digitalRead(LED3));digitalWrite(LED4, HIGH);delay(50);digitalWrite(LED4, !digitalRead(LED4));delay(50);digitalWrite(LED4, HIGH);delay(50);digitalWrite(LED4, !digitalRead(LED4));digitalWrite(LED3, HIGH);delay(50);digitalWrite(LED3, !digitalRead(LED3));digitalWrite(LED2, HIGH);delay(50);digitalWrite(LED2, !digitalRead(LED2));digitalWrite(LED1, HIGH);delay(50);digitalWrite(LED1, !digitalRead(LED1));delay(50);}break;default:{digitalWrite(LED1, LOW);digitalWrite(LED2, LOW);digitalWrite(LED3, LOW);digitalWrite(LED4, LOW);KEY_count = 0;}}
}void ScanKey()                        //按键扫描程序
{if (digitalRead(KEY) == LOW)        //有按键按下{delay(10);                        //延时去抖动if (digitalRead(KEY) == LOW)      //有按键按下{KEY_count++;                   //按键计数while (digitalRead(KEY) == LOW); //等待按键松手}}
}

注意:按下按键后,即下一次按下按键前,时间间隔>10s。


参考资料

参考资料1: 【Arduino官方教程】数字处理示例(三):按键防抖
参考资料2: 【Arduino官方教程】数字处理示例(五):按键状态变化检测

这篇关于Arduino程序设计(四)按键消抖+按键计数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/398978

相关文章

arduino ide安装详细步骤

​ 大家好,我是程序员小羊! 前言: Arduino IDE 是一个专为编程 Arduino 微控制器设计的集成开发环境,使用起来非常方便。下面将介绍如何在不同平台上安装 Arduino IDE 的详细步骤,包括 Windows、Mac 和 Linux 系统。 一、在 Windows 上安装 Arduino IDE 1. 下载 Arduino IDE 打开 Arduino 官网

C语言程序设计(数据类型、运算符与表达式)

一、C的数据类型 C语言提供的数据类型: 二、常量和变量 2.1常量和符号常量 在程序运行过程中,其值不能被改变的量称为常量。 常量区分为不同的类型: 程序中用#define(预处理器指令)命令行定义变量将代表常量,用一个标识符代表一个常量,称为符合常量。 2.2变量 变量代表内存中具有特定属性的一个存储单元,用来存放数据,在程序运行期间,这些值是可以 改变的。 变

C语言程序设计(选择结构程序设计)

一、关系运算符和关系表达式 1.1关系运算符及其优先次序 ①<(小于) ②<=(小于或等于) ③>(大于) ④>=(大于或等于 ) ⑤==(等于) ⑥!=(不等于) 说明: 前4个优先级相同,后2个优先级相同,关系运算符的优先级低于算术运算符,关系运算符的优先级高于赋值运算符 1.2关系表达式 用关系运算符将两个表达式(可以是算术表达式或关系表达式,逻辑表达式,赋值表达式,字符

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

独立按键单击检测(延时消抖+定时器扫描)

目录 独立按键简介 按键抖动 模块接线 延时消抖 Key.h Key.c 定时器扫描按键代码 Key.h Key.c main.c 思考  MultiButton按键驱动 独立按键简介 ​ 轻触按键相当于一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通与断开。  ​ 按键抖动 由于按键内部使用的是机

智能工厂程序设计 之1 智能工厂都本俱的方面(Facet,Aspect和Respect)即智能依赖的基底Substrate 之1

Q1、昨天分别给出了三个智能工厂的 “面face”(里面inter-face,外面outer-face和表面surface) 以及每个“面face” 各自使用的“方”(StringProcessor,CaseFilter和ModeAdapter)  。今天我们将继续说说三个智能工厂的“方面” 。在展开之前先看一下三个单词:面向facing,取向oriented,朝向toword。理解这三个词 和

归并排序/计数排序

1:归并排序 1.1:代码 void _MergeSort(int* arr, int left, int right, int* tmp){if (left >= right){return;}int mid = (left + right) / 2; _MergeSort(arr, left, mid, tmp); _MergeSort(arr, mid+1, righ

牛客小白月赛100(A,B,C,D,E,F三元环计数)

比赛链接 官方讲解 这场比较简单,ABC都很签到,D是个不太裸需要预处理的 B F S BFS BFS 搜索,E是调和级数暴力枚举,F是三元环计数。三元环考的比较少,没见过可能会偏难。 A ACM中的A题 思路: 就是枚举每个边变成原来的两倍,然后看看两短边之和是否大于第三边即可。 不能只给最短边乘 2 2 2,比如 1 4 8 这组数据,也不能只给第二短边乘 2 2 2,比

C语言程序设计 笔记代码梳理 重制版

前言 本篇以笔记为主的C语言详解,全篇一共十章内容,会持续更新基础内容,争取做到更详细。多一句没有,少一句不行!  形而上学者谓之道,形而下学者谓之器 形而上学者谓之道,形而下学者谓之器 第1章 C语言的流程 1.C程序经历的六个阶段 编辑(Edit)预处理(Preprocess)编译(Compile)汇编(Assemble)链接(Link)执行(Execute)  2.

【CF】C. Glass Carving(二分 + 树状数组 + 优先队列 + 数组计数)

这题简直蛋疼死。。。。。 A了一下午 #include<cstdio>#include<queue>#include<cstring>#include<algorithm>using namespace std;typedef long long LL;const int maxn = 200005;int h,w,n;int C1[maxn],C2[maxn];int