paddleocr学习笔记(五)将训练模型(checkpoints模型)转化为推理模型(inference模型)

本文主要是介绍paddleocr学习笔记(五)将训练模型(checkpoints模型)转化为推理模型(inference模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个主要参考PaddleOCR下的 /doc/doc_ch/inference.md

先按照这里的教程学习模型转化:

一、训练模型转inference模型

检测模型转inference模型

下载超轻量级中文检测模型:

wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar && tar xf ./ch_lite/ch_ppocr_mobile_v2.0_det_train.tar -C ./ch_lite/

上述模型是以MobileNetV3为backbone训练的DB算法,将训练好的模型转换成inference模型只需要运行如下命令:

# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.load_static_weights 参数需要设置为 False。
# Global.save_inference_dir参数设置转换的模型将保存的地址。python tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/

转inference模型时,使用的配置文件和训练时使用的配置文件相同。另外,还需要设置配置文件中的Global.pretrained_model参数,其指向训练中保存的模型参数文件。 转换成功后,在模型保存目录下有三个文件:

inference/det_db/├── inference.pdiparams         # 检测inference模型的参数文件├── inference.pdiparams.info    # 检测inference模型的参数信息,可忽略└── inference.pdmodel           # 检测inference模型的program文件

保存后生成的文件:

上面是使用下载的模型转换的,下面介绍使用自己训练的模型转化:

使用自己训练的模型转化

承接paddleocr学习笔记(四)评估、推理 将里面使用的自己训练的模型保存成推理模型

# 保存自己训练的模型
python tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./output/db_mv3/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/db_mv3/

可以看到保存的模型如下:

 

二、文本检测模型推理

文本检测模型推理,默认使用DB模型的配置参数。当不使用DB模型时,在推理时,需要通过传入相应的参数进行算法适配,细节参考下文。

1. 超轻量中文检测模型推理

超轻量中文检测模型推理,可以执行如下命令:使用的是第一步中下载解压转化的推理模型

python tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/"

可视化文本检测结果默认保存到./inference_results文件夹里面,结果文件的名称前缀为'det_res'。

检测结果如下:

[2021/02/27 14:52:09] root INFO: Predict time of ./doc/imgs/00018069.jpg: 1.1728620529174805
[2021/02/27 14:52:09] root INFO: The visualized image saved in ./inference_results\det_res_00018069.jpg

通过参数limit_typedet_limit_side_len来对图片的尺寸进行限制, limit_type可选参数为[maxmin], det_limit_size_len 为正整数,一般设置为32 的倍数,比如960。

参数默认设置为limit_type='max', det_limit_side_len=960。表示网络输入图像的最长边不能超过960, 如果超过这个值,会对图像做等宽比的resize操作,确保最长边为det_limit_side_len。 设置为limit_type='min', det_limit_side_len=960 则表示限制图像的最短边为960。

如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以设置det_limit_side_len 为想要的值,比如1216。

python tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216

检测结果如下:

[2021/02/27 14:58:47] root INFO: Predict time of ./doc/imgs/00018069.jpg: 1.1828348636627197
[2021/02/27 14:58:47] root INFO: The visualized image saved in ./inference_results\det_res_00018069.jpg

 如果想使用CPU进行预测,执行命令如下:通过检测显存变化,确实前面的显存上升又下降了,这个就没有显存变化,同时通过观察推理时间,CPU比GPU快很多,这主要是因为模型较小GPU的优势不明显,其次GPU加载模型比CPU慢,完成第一次推理后GPU的推理速度才会明显快于CPU,所以看速度应该在批量测试中去比较。

python tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/"  --use_gpu=False

检测结果:

[2021/02/27 15:03:34] root INFO: Predict time of ./doc/imgs/00018069.jpg: 0.13463759422302246
[2021/02/27 15:03:34] root INFO: The visualized image saved in ./inference_results\det_res_00018069.jpg

 

使用自己训练转化的推理模型测试: 

python tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/db_mv3/"

 检测结果如下:由于我只是训练了icdar2015的1000张数据,而且是自然场景多是街景图片,不包含文档类图片,跟百度官方大数据集训练的模型效果自然是没有可比性,此处只是说明转化模型的正确性。

[2021/02/27 15:06:36] root INFO: Predict time of ./doc/imgs/00018069.jpg: 1.1948025226593018
[2021/02/27 15:06:36] root INFO: The visualized image saved in ./inference_results\det_res_00018069.jpg

使用icdar2015中的数据检测一下自己训练的模型:

python tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/db_mv3/"

检测结果如下:

[2021/02/27 15:11:13] root INFO: Predict time of ./doc/imgs_en/img_10.jpg: 1.1848294734954834
[2021/02/27 15:11:13] root INFO: The visualized image saved in ./inference_results\det_res_img_10.jpg

 

 

这篇关于paddleocr学习笔记(五)将训练模型(checkpoints模型)转化为推理模型(inference模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/398659

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Java强制转化示例代码详解

《Java强制转化示例代码详解》:本文主要介绍Java编程语言中的类型转换,包括基本类型之间的强制类型转换和引用类型的强制类型转换,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录引入基本类型强制转换1.数字之间2.数字字符之间引入引用类型的强制转换总结引入在Java编程语言中,类型转换(无论

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操