ORB-SLAM2 技术详解(3)-- 源码编译及TUM RGB-D数据集测试

2023-11-21 00:20

本文主要是介绍ORB-SLAM2 技术详解(3)-- 源码编译及TUM RGB-D数据集测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

0. 摘要

1. ORB-SLAM2 简介

2. 安装依赖库

(1)安装Pangolin 

(2)安装必要的依赖库

(3)安装OpenCV

(4)安装Eigen

(5)安装BLAS and LAPACK库

(1) BLAS: Basic Linear Algebra Subprograms

(2) LAPACK:Linear Algebra PACKage

3. 编译OEB_SLAM

4. 运行测试程序

4.1 TUM数据集格式简介:官网介绍https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats

4.2. RGB-D 测试实例, 按照要求下载数据集

4.3.TMU下载associate.py.

4.4.打开终端,进入到associate.py所在目录,

4.5 运行测试数据集效果

4.6 evo分析工具,orghttps://github.com/MichaelGrupp/evo/wiki/Plotting


0. 摘要

近段时间一直在学习高翔博士的《视觉SLAM十四讲》,学了以后发现自己欠缺的东西实在太多,好多都需要深入系统的学习。ORB-SLAM2是一套完整的SLAM方案,提供了单目,双目和RGB-D三种接口。它能够实现地图重用,回环检测和重新定位的功能无论是在室内的小型手持设备,还是到工厂环境的无人机和城市里驾驶的汽车,ORB-SLAM2都能够在标准的CPU上进行实时工作。

ORB-SLAM2在后端上采用的是基于单目和双目的光束法平差优化(BA)的方式,这个方法允许米制比例尺的轨迹精确度评估。此外,ORB-SLAM2包含一个轻量级的定位模式,该模式能够在允许零点漂移的条件下,利用视觉里程计来追踪未建图的区域并且匹配特征点。 可以说,ORB_SLAM2是近几年SLAM的集大成者,它吸收了近几年monoslam领域的很多理论成果,比如逆深度的使用,g2o工具箱的优化等。而且以orb特征贯穿始终,从一开始的特征处理,匹配,以及用于回环的bag-of-words,词典,全用的是orb。缺点在于它的的建图部分只含有稀疏的map point,这不仅让最终建的图很难看,而且对于机器人下一步的应用会造成很大困难。

      文章主要对ORB-SLAM2进行编译运行。以及下载TUM上的数据集。然后跑自己的数据集,以及利用笔记本摄像头进行测试。

1. ORB-SLAM2 简介

源码github地址:https://github.com/raulmur/ORB_SLAM2

2. 安装依赖库

参考:ORB_SLAM2功能包的构建和在ROS中的应用 - 简书

(1)安装Pangolin 

使用git命令进行下载       git  clone https://github.com/stevenlovegrove/Pangolin.gitcd Pangolin

终端里输入:

mkdir pangolin
cd pangolin
git clone https://github.com/stevenlovegrove/Pangolin.git
cd Pangolin
mkdir build
cd build
cmake ..
cmake --build .

(2)安装必要的依赖库

a、GLEW:

sudo apt-getinstall libglew-dev

b、Boost:

sudo apt-getinstall libboost-devlibboost-thread-devlibboost-filesystem-dev

c、Python2/Python3:

sudo apt-getinstall libpython2.7-dev

d、编译基础库

sudo apt-getinstall build-essential

(3)安装OpenCV

安装依赖:

a、编译器相关:

sudo apt-getinstall build-essential

b、必须依赖:

sudo apt-getinstall cmake git libgtk2.0-devpkg-config libavcodec-dev libavformat-dev libswscale-dev

c、可选安装:

sudo apt-getinstall python-devpython-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

安装OpenCV:

a、官网下载OpenCV 3.x.x forLinux下载地址,解压到Ubuntu中

b、进入OpenCV文件夹,配置工程

mkdir release

cd release

cmake -D CMAKE_BUILD_TYPE=RELEASE-D CMAKE_INSTALL_PREFIX=/usr/local .. -D BUILD_TIFF=ON 

c、编译

make

sudo make install

(4)安装Eigen 和 g2o

下载Eigen下载地址,进入到在解压后的Eigen文件夹(例如eigen-eigen-07105f7124f9)下

编译:

mkdir buildcd buildcmake ..

安装:

makesudo make install

编译安装方法类似

mkdir buildcd buildcmake ..

注意:Eigen默认安装路径为/usr/local/include/eigen3/Eigen, 而实际使用的查找路径为/usr/inlcude/eigen3/Eigen,因此需要将两个地址做链接

sudo ln -s /usr/local/include/eigen3 /usr/include/eigen3

再次编译项目测试通过

参考ubuntu16.04+eigen3安装 - 灰色的石头 - 博客园Eigen库安装指南(两种方式)1、apt-get方式(假设默认安装到/usr/local/include里(可在终端中输入locate eigen3查看位置),若实际中默认安装到了/usr/inclhttps://www.cnblogs.com/newneul/p/8256803.html


(5)安装BLAS and LAPACK库

sudo apt-getinstall libblas-dev

sudo apt-getinstall liblapack-dev

   g2o需要BLAS和LAPACK

(1) BLAS: Basic Linear Algebra Subprograms

提供了基本的向量和矩阵操作:

- Level-1 BLAS: 支持 标量、向量、向量-向量 操作

- Level-2 BLAS: 支持 矩阵-向量 操作

- Level-3 BLAS: 支持 矩阵-矩阵 操作

(2) LAPACK:Linear Algebra PACKage

    它调用BLAS来实现更高级的功能,支持以下操作:

- 解线性方程组

    - 线性方程组的最小二乘解

    - 特征值问题和奇异值问题

    - 矩阵分解 (LU, Cholesky, QR, SVD, Schur, generalized Schur)

    - 支持密集和带状矩阵,但不支持一般的稀疏矩阵

    - 支持单精度和双精

 DBoW2 and g2o (Included in Thirdparty folder)

   ORB_SLAM2使用修改版的DBoW2 库进行位置识别 ,使用 g2o 库进行非线性优化. 这两个修改版的库被放在第三方文件夹内.

总的对于 opencv 和 eigen3,可以简单的用一行命令来解决:

sudo apt-get install libopencv-dev libeigen3-dev libqt4-dev qt4-qmake libqglviewer-dev libsuitesparse-dev libcxsparse3.1.2 libcholmod-dev  其中一部分是 g2o 的依赖项,不用太在意它的具体内容。至此,应该可以顺利编译 ORB-SLAM2 了


3. 编译OEB_SLAM

编译ORB_SLAM2库和例子程序(单目、双目和RGB-D)

cd ORB_SLAM2  chmod +x build.sh  ./build.sh  

    生成的libORB_SLAM2.so位于lib目录下,可执行程序mono_tum, mono_kitti, rgbd_tum, stereo_kitti, mono_euroc and stereo_euroc位于Examples目录下。

到这里,如果小伙伴们不使用ROS的话,ORB_SLAM2其实已经可以正常使用了。但是如果要使用ROS的话,还要有几个步骤,第一个在~/.bashec中添加环境。

  export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:PATH/ORB_SLAM2/Examples/ROS

编译对应的ROS文件

  chmod +x build_ros.sh./build_ros.sh

这样ORB_SLAM2其实已经全部编译好了。

注意:编译期间可能遇到各种错误,请查看本人博客总结:ORB_SLAM2编译debug 小结_Techblog of HaoWANG-CSDN博客


4. 运行测试程序

参考:ORB-SLAM2编译安装和USB摄像头例程运行 - 简书 ORB-SLAM2编译安装和USB摄像头例程运行

4.1 TUM数据集格式简介:官网介绍Computer Vision Group - File Formats

4.2. RGB-D 测试实例, 按照要求下载数据集

TMU Computer Vision Group - Useful tools for the RGB-D benchmark,下载的是fr1/xyz,将其解压到你喜欢的目录.我放在了~/TUM目录下面

4.3.TMU下载associate.py.

放在~/TUM数据集目录下面.

4.4.打开终端,进入到associate.py所在目录,

即~/TUM/rgbd_dataset_freiburg1_xyz,之后运行

python associate.py PATH_TO_SEQUENCE/rgb.txt PATH_TO_SEQUENCE/depth.txt > associations.txt

这里的PATH_TO_SEQUENCE 是指的下载数据集的目录~/TUM/rgbd_dataset_freiburg1_xyz里面有depth.txt  rgb.txt,将其替换至你的文件目录。

运行之后在该目录中将会生成一个associations.txt文件.

4.5 运行测试数据集效果

4.6 evo分析工具,orghttps://github.com/MichaelGrupp/evo/wiki/Plotting

evo可以评估两条轨迹的误差,主要有两个命令:

evo_ape:计算绝对位姿误差(absolute pose error),用于整体评估整条轨迹的全局一致性;

evo_rpe:计算相对位姿误差(relative pose error),用于评价轨迹局部的准确性。

这两个指令也支持evo_traj的可选参数,轨迹对齐-a与尺度缩放-s。完整指令如下:

evo_ape tum realTraj.txt estTraj.txt -a –s

这篇关于ORB-SLAM2 技术详解(3)-- 源码编译及TUM RGB-D数据集测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/398472

相关文章

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

前端CSS Grid 布局示例详解

《前端CSSGrid布局示例详解》CSSGrid是一种二维布局系统,可以同时控制行和列,相比Flex(一维布局),更适合用在整体页面布局或复杂模块结构中,:本文主要介绍前端CSSGri... 目录css Grid 布局详解(通俗易懂版)一、概述二、基础概念三、创建 Grid 容器四、定义网格行和列五、设置行

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的