优化问题的拉格朗日Lagrange对偶法原理

2023-11-20 16:10

本文主要是介绍优化问题的拉格朗日Lagrange对偶法原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先我们定义一般形式的求解x的优化问题:

\\ \text{ Minimize }\ f_o(x) \\ f_i(x)\leq 0, i=1,...,m \\ h_j(x)= 0, j=1,...n \\

  • f_o(x)表示优化的目标函数,上述为最小优化,实际上最大优化可以改写为-f_o(x)的形式
  • f_i(x)\leq 0表示第i个不等式约束
  • h_j(x)=0表示等式约束

1. Lagrange对偶问题

上述优化问题的拉格朗日Lagrange对偶法求解,是将上述带约束的目标优化问题改写为如下无约束的Lagrange函数式子。

L(x,\lambda ,\nu )=f_o(x) + \sum_i^m \lambda_i f_i(x) + \sum_j^n \nu_j h_j(x)

上述Lagrange函数式子存在如下对偶函数,其是Lagrange函数关于x取最小值,即:

g(\lambda ,\nu) = \underset{x}{inf}(L(x,\lambda ,\nu ))=\underset{x}{inf}(f(x) + \sum_i^m \lambda_i f_i(x) + \sum_j^n \nu_j h_j(x))

对偶函数是关于\lambda ,\nu的函数,很显然其是原来Lagrange函数式子的下界,假设优化问题存在最优解x^*,当\lambda_i\geq 0时,此时存在最优目标大于对偶函数。

f_o(x^*)>L(x^*,\lambda ,\nu )=f_o(x^*) + \sum_i^m \lambda_i f_i(x^*) + \sum_j^n \nu_j h_j(x^*)>=g(\lambda ,\nu)

Lagrange对偶法即是通过最大化原问题Lagrange对偶函数,从而逼近原问题的下界来求解原问题最优解,因为\lambda ,\nu的参数远小于原问题的求解参数,因此转换为对偶问题后,求解更为简单。

\\ \text{ Maximize }\ g(\lambda, \nu) \\ \lambda_i \geq 0, i=1,...,m

2. 强弱对偶性

接下来的问题是通过对偶函数得到下界d^*同原问题的最优解p^*之间的差距是多少?当对偶函数得到下界同原问题的最优解相等时,称之为强对偶性,反之称为弱对偶性。而这个差值称之为最优对偶间距

Slater约束准则给出为强对偶性成立的条件:

  • 原问题f_o(x)是凸问题
  • 存在内点使得所有的不等式约束严格成立即f_i(x) < 0,如果f_i(x)是仿射不等式时取等于也是可行的。

3. 如何转换为对偶函数

因为对偶函数g(\lambda ,\nu )是Lagrange函数关于x取最小值,假设L(x,\lambda ,\nu )是关于x的凸函数,且存在关于x的最小值,此时存在\hat{x}使得关于x的偏导数为0,则存在对偶函数为g(\lambda, \nu)=L(\hat{x},\lambda, \nu)

\frac{\partial }{\partial x}L(\hat{x},\lambda, \nu)=0

假设为对偶函数为g(\lambda, \nu)=L(\hat{x},\lambda, \nu)也是关于\lambda, \nu可导,此时最优值\lambda^*, \nu^*存在

\\ \frac{\partial }{\partial \lambda_i}g(\lambda^*, \nu^*)=f_i(\hat{x}) \leq 0 \\ \frac{\partial }{\partial \nu_j}g(\lambda^*, \nu^*)=h_j(\hat{x})=0

此外最优值\lambda^*, \nu^*要使对偶函数g(\lambda, \nu)存在最大值,由于\lambda_i\geq 0,因此:

\lambda_if_i(\hat{x})=0

上述五个条件构成了在Slater约束准则下求解优化问题最优解\hat{x}存在的KKT条件:

\begin{cases} \frac{\partial }{\partial x}L(\hat{x},\lambda, \nu)=0 \\ \frac{\partial }{\partial \lambda_i}g(\lambda^*, \nu^*)=f_i(\hat{x}) \leq 0 \\ \frac{\partial }{\partial \nu_j}g(\lambda^*, \nu^*)=h_j(\hat{x})=0 \\ \lambda_if_i(\hat{x})=0 \\ \lambda_i\geq 0 \end{cases}

例子1:线性规划问题

首先我们定义一个一般性的线性规划问题,其中x是表示求解向量[x_1,x_2,...,x_n],该问题可解是指存在唯一解。

\\ \text{ Minimize }\ c^T\cdot x \\ \text{subject: }A\cdot x \leq b

Lagrange函数式子表示为:

L(x,\lambda )=c^Tx + \lambda(Ax-b)=-\lambda b + (c^T + \lambda A)x

Lagrange函数仅当c^T + \lambda A=0时,才是有界的,此时对偶函数为g(\lambda )=-\lambda b,否则为负无穷,因此原问题可以转换为求解对偶问题g(\lambda )=-\lambda b的最大值,此时Slater约束准则,对偶问题的解也是原问题的最优解。

\\ \text{ Maximize }\ -\lambda b \\ \text{subject: }c^T + \lambda A=0 ,\ \lambda \geq 0

例子2:最小二乘法

考虑以下问题:

\\ \text{ Minimize }\ x^T\cdot x \\ \text{subject: }A\cdot x = b

Lagrange函数式子表示为:

L(x,\nu)=x^Tx + \nu^T(Ax-b)=-b\nu^T + x^Tx + \nu^T Ax

Lagrange函数关于x是二阶可导的凸函数,存在最小值的解\hat{x}

\frac{\partial }{\partial x}L(\hat{x},\lambda, \nu)=2\hat{x}+A^T\nu =0\rightarrow \hat{x}=-\frac{1}{2}A^T\nu

此时对偶函数为下式,此时原问题被转换为一个无约束的对偶问题的求解。

g(\nu)=L(\hat{x}, \nu)=\hat{x}^T \hat{x} + \nu^T A\hat{x}-b^T\nu =-\frac{1}{4}\nu^T AA^T\nu-b^T\nu

4. 最优问题的转换

接下来我们考虑更为通用的优化问题形式,之前讨论了不等式约束中的大于和小于可以通过变换符号进行调整,实际上我们可以通过新增求解变量x_i^s将不等式约束转换为等式约束:

\\ \text{ Minimize }\ f_o(x) \\ f_i(x) + x_i^s = 0, i=1,...,m \\ h_j(x)= 0, j=1,...n \\ x_i^s\geq 0

结合上述对偶问题的转换,我们可以将通用的优化问题形式转换为等式约束问题,甚至无约束的问题,下一篇我们将介绍等式约束优化问题和无约束优化问题的通用求解方法。

这篇关于优化问题的拉格朗日Lagrange对偶法原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395845

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言