本文主要是介绍基于阿基米德算法优化变分模态分解AOA-VMD实现信号去噪算法研究附Matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
智能优化算法 神经网络预测 雷达通信 无线传感器 电力系统
信号处理 图像处理 路径规划 元胞自动机 无人机
🔥 内容介绍
在信号处理领域,变分模态分解(VMD)是一种用于信号分解和模态分解的强大工具。它可以将非平稳信号分解为多个固有模态函数(IMF),每个IMF代表信号中的一个频率成分。然而,VMD算法本身在某些情况下可能存在一些不足之处,例如收敛速度较慢或者结果不够准确。
为了克服这些问题,研究人员提出了一种改进的VMD算法,称为AOA-VMD阿基米德算法AOA优化VMD变分模态分解。该算法结合了AOA(Artificially Intelligent Optimization Algorithm)和VMD算法的优点,以提高分解结果的准确性和收敛速度。
AOA-VMD算法的核心思想是利用AOA算法的优化能力来优化VMD算法的分解过程。AOA算法是一种基于人工智能的优化算法,它模拟了自然界中的生物进化过程,通过不断迭代搜索最优解。在AOA-VMD算法中,AOA算法被应用于VMD算法的每个迭代步骤中,以优化信号的分解过程。
AOA-VMD算法的具体步骤如下:
-
初始化:设置AOA算法的参数,包括种群大小、迭代次数和适应度函数等。
-
生成初始种群:根据VMD算法的初始条件,随机生成一组初始种群。
-
评估适应度:根据VMD算法的评估指标,计算每个个体的适应度值。
-
选择操作:根据适应度值,选择一部分个体作为下一代的父代。
-
交叉操作:对父代进行交叉操作,生成子代。
-
变异操作:对子代进行变异操作,引入新的个体。
-
更新种群:将子代和父代合并,更新种群。
-
判断终止条件:判断是否达到终止条件,如果是,则停止迭代;否则,返回步骤3。
-
输出结果:输出最优解,即信号的分解结果。
通过将AOA算法与VMD算法相结合,AOA-VMD算法在信号分解和模态分解方面取得了显著的改进。研究表明,AOA-VMD算法能够更快速地收敛,并且分解结果更加准确。这使得AOA-VMD算法在信号处理和振动分析等领域具有广泛的应用前景。
总结来说,AOA-VMD阿基米德算法AOA优化VMD变分模态分解是一种结合了AOA算法和VMD算法的改进算法,用于信号分解和模态分解。通过优化VMD算法的分解过程,AOA-VMD算法能够提高分解结果的准确性和收敛速度。这一算法在信号处理领域具有广泛的应用前景,并为相关研究提供了新的思路和方法。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
正在上传…重新上传取消
🔗 参考文献
[1] 白芳芳,苗长云,张诚,等.心音信号去噪算法的Matlab仿真及DSP实现[J].新型工业化, 2011, 000(008):77-84.DOI:10.3969/j.issn.2095-6649.2011.08.012.
[2] 白芳芳,苗长云,张诚,等.心音信号去噪算法的Matlab仿真及DSP实现[J].新型工业化, 2011.DOI:CNKI:SUN:XXHG.0.2011-08-012.
[3] 李淑裕.基于变分模态分解的超声导波断轨监测算法研究[D].西安理工大学[2023-10-06].DOI:CNKI:CDMD:2.1017.731709.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
这篇关于基于阿基米德算法优化变分模态分解AOA-VMD实现信号去噪算法研究附Matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!