二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)是交叉熵损失函数(CrossEntropyLoss)的特殊情况

本文主要是介绍二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)是交叉熵损失函数(CrossEntropyLoss)的特殊情况,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一直以来看到二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)
还以为是很复杂的东西,原来其实是交叉熵损失函数(CrossEntropyLoss)的特殊情况,也就是二元交叉熵损失函数其实就是交叉熵损失函数。

推导如下:

对于多分类问题,交叉熵损失函数的一般形式如下:

CrossEntropyLoss ( input , target ) = − ∑ i = 1 C target i ⋅ log ⁡ ( softmax ( input ) i ) \text{CrossEntropyLoss}(\text{\textbf{input}}, \text{target}) = -\sum_{i=1}^{C} \text{target}_i \cdot \log(\text{softmax}(\text{\textbf{input}})_i) CrossEntropyLoss(input,target)=i=1Ctargetilog(softmax(input)i)

其中:

  • input 是模型的输出,是一个包含了未归一化的分数(logits)的向量。
  • target 是真实的标签,是一个表示类别的 one-hot 编码向量。
  • C 是类别的数量。
  • softmax(⋅) 是 softmax 函数,将输入的分数转换成概率分布。softmax(input)i表示取softmax运算后结果向量的第i个分量(标量,值)

对于二元分类问题,我们可以将多分类问题中的公式特殊化。假设只有两个类别(C = 2),我们可以将多分类交叉熵损失函数中的求和项简化为只有两项,如下:

CrossEntropyLoss ( input , target ) = − ( target 1 ⋅ log ⁡ ( softmax ( input ) 1 ) + target 2 ⋅ log ⁡ ( softmax ( input ) 2 ) ) \text{CrossEntropyLoss}(\text{\textbf{input}}, \text{target}) = -(\text{target}_1 \cdot \log(\text{softmax}(\text{\textbf{input}})_1) + \text{target}_2 \cdot \log(\text{softmax}(\text{\textbf{input}})_2)) CrossEntropyLoss(input,target)=(target1log(softmax(input)1)+target2log(softmax(input)2))

在二元分类中,因为只有两个类别target1和target2,且概率和为1,因此,我们可以将上述公式中的 softmax(input)2替换为 1 - softmax(input)1,softmax(input)2替换为1 - softmax(input)1。得到如下形式:

BCELoss ( input , target ) = − ( target 1 ⋅ log ⁡ ( softmax ( input ) 1 ) + ( 1 − target 1 ) ⋅ log ⁡ ( 1 − softmax ( input ) 1 ) ) \text{BCELoss}(\text{\textbf{input}}, \text{target}) = -(\text{target}_1 \cdot \log(\text{softmax}(\text{\textbf{input}})_1) + (1 - \text{target}_1) \cdot \log(1 - \text{softmax}(\text{\textbf{input}})_1)) BCELoss(input,target)=(target1log(softmax(input)1)+(1target1)log(1softmax(input)1))

在二元分类中,比如在推荐系统里,算出来的结果往往是 user 对 item 的评分预测,是个值,不是上面 input
向量,所以直接对这个评分预测套个Sigmoid,将最终的评分预测的范围整到表示概率的 (0, 1) 的范围里去,我感觉这样操作起来更方便。所以,我们可以将上式中的 softmax(input) 1换成Sigmoid(y^uv) ,得到如下二元交叉熵损失函数的形式:

BCELoss ( input , target ) = − ( target ⋅ log ⁡ ( sigmoid ( y ^ u v ) + ( 1 − target ) ⋅ log ⁡ ( 1 − sigmoid ( y ^ u v ) ) ) \text{BCELoss}(\text{\textbf{input}}, \text{target}) = -(\text{target} \cdot \log(\text{sigmoid}(\hat{y}_{uv}) + (1 - \text{target}) \cdot \log(1 - \text{sigmoid}(\hat{y}_{uv}))) BCELoss(input,target)=(targetlog(sigmoid(y^uv)+(1target)log(1sigmoid(y^uv)))

这个形式的损失函数是从多分类问题中的交叉熵损失函数推导得到的,并在二元分类问题中特殊化。

这篇关于二元交叉熵损失函数(Binary Cross Entropy Loss,BCELoss)是交叉熵损失函数(CrossEntropyLoss)的特殊情况的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/391623

相关文章

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

BUUCTF(34)特殊的 BASE64

使用pycharm时,如果想把代码撤销到之前的状态可以用 Ctrl+z 如果不小心撤销多了,可以用 Ctrl+Shift+Z 还原, 别傻傻的重新敲了 BUUCTF在线评测 (buuoj.cn) 查看字符串,想到base64的变表 这里用的c++的标准程序库中的string,头文件是#include<string> 这是base64的加密函数 std::string

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

Unity3D 运动之Move函数和translate

CharacterController.Move 移动 function Move (motion : Vector3) : CollisionFlags Description描述 A more complex move function taking absolute movement deltas. 一个更加复杂的运动函数,每次都绝对运动。 Attempts to

SigLIP——采用sigmoid损失的图文预训练方式

SigLIP——采用sigmoid损失的图文预训练方式 FesianXu 20240825 at Wechat Search Team 前言 CLIP中的infoNCE损失是一种对比性损失,在SigLIP这个工作中,作者提出采用非对比性的sigmoid损失,能够更高效地进行图文预训练,本文进行介绍。如有谬误请见谅并联系指出,本文遵守CC 4.0 BY-SA版权协议,转载请联系作者并注