这图怎么画| 批量小提琴图+箱线图+散点+差异分析

2023-11-11 04:59

本文主要是介绍这图怎么画| 批量小提琴图+箱线图+散点+差异分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

13a73510c397ef628fdf766cfddd725c.jpeg

cover

写在前面

【这图怎么画】系列的图都来自VIP群里同学的提问。推文只是对图片的复现,不代表作者对图片展现形式的认同。欢迎同学们在群里分析有意思的图片。

本期图片

0f49c434f46aee07be664dba2bac3a08.png

「Title:」Typing characteristics of metabolism-related genes in osteoporosis

「Journal:」Front. Pharmacol.

「Doi:」https://doi.org/10.1016/j.eja.2022.126692

读图

The expression difference box plot represents the difference in expression levels of GPR31, GATM, DDB2, ARMCX1, RPS6, BTBD3, ADAMTSL4, COQ6, B3GNT2, and CD9 genes among the three isoforms.

没有什么特殊。之前画过的箱线图:

  1. 跟着 Cell 学作图 | 3.箱线图+散点+差异显著性检验

  2. 跟着Nat Commun学作图 | 1.批量箱线图+散点+差异分析

  3. 跟着Nat Commun学作图 | 4.配对箱线图+差异分析

  4. R实战 | 对称云雨图 + 箱线图 + 配对散点 + 误差棒图 +均值连线

  5. 跟着Nature学作图 | 质控箱线图

  6. 跟着 Cell 学作图 | 箱线图+散点(组间+组内差异分析)

复现结果

c1a3ac7f602d3a27e8c9920bacad9ed0.png
row1
148f2907b4ed3a47b5cae4453a85323b.png
all

示例数据和代码领取

点赞在看 本文,分享至朋友圈集赞30个保留30分钟,截图发至微信mzbj0002领取。

「木舟笔记2022年度VIP可免费领取」

注:2022马上过去了,为了方便各位读者朋友,现推出木舟笔记永久VIP,售价169¥2022VIP仅需支付差价进行升级。木舟笔记永久VIP享本号所有资源(限定课程除外),后续不再推出VIP企划。

木舟笔记2022年度VIP企划

「权益:」

  1. 「2022」年度木舟笔记所有推文示例数据及代码(「在VIP群里实时更新」)。

    91348a5ddebf27b71ee8b7449beab6af.png
    data+code
  2. 木舟笔记「科研交流群」

  3. 「半价」购买跟着Cell学作图系列合集(免费教程+代码领取)|跟着Cell学作图系列合集。

「收费:」

「99¥/人」。可添加微信:mzbj0002 转账,或直接在文末打赏。

aaa77b5e4ad047c23c400d0eaead253c.png

绘图

# loda data ana preprocess
mRNA <- read.csv("All_mRNA_FPKM.csv",header=T,row.names=1)
#log2
bar_mat <- t(log2(mRNA+1))
# group info
anno <- read.csv("sample_index.csv",header=T,row.names=1)
anno$type2 <- anno$Type
anno <- anno[rownames(bar_mat),]
bar_mat <- bar_mat[rownames(anno),]
bar_mat<- as.data.frame(bar_mat)
bar_mat$sam <- anno$Type## plot
library(RColorBrewer)
library(ggpubr)
library(ggplot2)
bar_mat$sam<-factor(bar_mat$sam,levels=c("C1","C2","C3","C4"))
# comparisons
my_comparisons <- list(c("C1", "C2"),c("C1", "C3"),c("C1", "C4"))# gene list
gc <- head( colnames(bar_mat), -1)
#开始批量绘制
plist<-list()
for (i in 1:length(gc)){bar_tmp<-bar_mat[,c(gc[i],"sam")]colnames(bar_tmp)<-c("Expression","sam")pb1<- ggplot(data = bar_tmp,aes(x = sam, y = Expression , fill = sam))+ scale_fill_manual(values = mycol[c(7,5,3,1)]) +geom_violin(alpha = 0.4, position = position_dodge(width = .75), size = 0.8, color="black") +geom_boxplot(notch = TRUE, outlier.size = -1, color="black", lwd=0.8, alpha = 0.7) +geom_point(shape = 21, size=2, position = position_jitterdodge(), color="black", alpha = 1) +theme_bw() + ylab("Log12(FPKM+1)") +xlab(gc[i]) +theme(axis.text.x = element_text(size = 12, color = "black"),axis.ticks = element_line(size=0.2, color="black"),axis.ticks.length = unit(0.2, "cm"),legend.position = "none",panel.background = element_blank(),panel.grid = element_blank(),axis.title = element_text(size = 12),axis.text = element_text(size = 12)) +stat_compare_means(method="t.test",hide.ns = F,comparisons =my_comparisons,label="p.signif")plist[[i]]<-pb1
} # cowplot
library(cowplot)
p <- plot_grid(plotlist = plist, ncol = 5)
## save
ggsave("boxplot1208.pdf",width = 14,height = 20)
69a6c50a875e1db37c76d43ce5f32268.png

往期内容

  1. CNS图表复现|生信分析|R绘图 资源分享&讨论群!

  2. 这图怎么画| 有点复杂的散点图

  3. 这图怎么画 | 相关分析棒棒糖图

  4. 组学生信| Front Immunol |基于血清蛋白质组早期诊断标志筛选的简单套路

  5. (免费教程+代码领取)|跟着Cell学作图系列合集

  6. Q&A | 如何在论文中画出漂亮的插图?

  7. 跟着 Cell 学作图 | 桑葚图(ggalluvial)

  8. R实战 | Lasso回归模型建立及变量筛选

  9. 跟着 NC 学作图 | 互作网络图进阶(蛋白+富集通路)(Cytoscape)

  10. R实战 | 给聚类加个圈圈(ggunchull)

  11. R实战 | NGS数据时间序列分析(maSigPro)

  12. 跟着 Cell 学作图 | 韦恩图(ggVennDiagram)


fa615a000fc510a34c8be6b7d74c87c8.png
木舟笔记矩阵

这篇关于这图怎么画| 批量小提琴图+箱线图+散点+差异分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/387708

相关文章

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

W外链微信推广短连接怎么做?

制作微信推广链接的难点分析 一、内容创作难度 制作微信推广链接时,首先需要创作有吸引力的内容。这不仅要求内容本身有趣、有价值,还要能够激起人们的分享欲望。对于许多企业和个人来说,尤其是那些缺乏创意和写作能力的人来说,这是制作微信推广链接的一大难点。 二、精准定位难度 微信用户群体庞大,不同用户的需求和兴趣各异。因此,制作推广链接时需要精准定位目标受众,以便更有效地吸引他们点击并分享链接

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号