让微积分穿梭于工作与学习之间(17):圆弧直线在端点处的切线及其在趋于直线时的极限

本文主要是介绍让微积分穿梭于工作与学习之间(17):圆弧直线在端点处的切线及其在趋于直线时的极限,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对CAD圆弧直线不了解的朋友可以先阅读以下博文:

https://blog.csdn.net/iloveas2014/article/details/103837857

https://blog.csdn.net/iloveas2014/article/details/103848611

在上篇的末尾,我提到了线条端点处的切线在寻找封闭图形中的重要性,但没给出任何解释,为此我转发一篇博文。

https://blog.csdn.net/keng_s/article/details/67102867

大家在阅读的过程中可以看到其中的一步是要对线条进行角度排序。对于直线线段来说,角度取两点的连线即可,而曲线则不能再取连线了。大家看下面的图。

我们想要把AB,弧AC,AD三条线在A端点处按顺时针排序,正确的结果是AB,AC,AD,但若用连线AC来作为排序依据的话,那么顺序就变成AC,AB,AD了。

 

所以要改用弧AC在A点处的切线AC'来计算角度,如下图所示。

下面我们来尝试计算圆弧直线在端点上的切线斜率,显然当圆弧的凸度趋于0时,圆弧变为直线,切线跟连线的方向一致,如下面的动图所示。

求切线斜率,相信大家都会想到用求导的方法,不过圆弧是多值函数,所以计算的方法也特殊一些。

总的来说,要计算这种曲线的切线及其趋于直线时的极限,我想到的方法有3种:

1 利用圆弧切线的几何性质——跟切点上的半径垂直进行计算,然后计算bulge趋于0时的极限

2 对圆弧直线的一般方程进行隐函数的求导

3 把圆弧直线的一般方程看作二元函数,然后求出其偏导数,再根据以下公式求得y对x的导数

方法2和方法3其实都是隐函数的求导,只是3更为简便,同时也更难理解,毕竟涉及了二元函数。

此处我们使用方法2。感兴趣的朋友可以自行用方法1或者方法3来推导,也可以留言跟我讨论。

我们把二元二次方程的一般式搬过来,在最普通的情况下进行求导。然后,圆和直线都不包含xy项,可以省略

两侧对x进行求导,得到

然后我们把圆弧曲线中对应的系数代进去

至此,圆弧直线在线上任一点(x,y)的切线斜率就算出来了。

然而这个式子还是蛮复杂的,但是我们用得最多的一般都是起点和终点,那么我们分别把(sx,sy)和(ex,ey)代进去算一下。

看着还是蛮复杂,但是起点和终点都是常量,因此在编程的时候我们可以把起点和终点的差值用一个向量(Δx,Δy)存起来从而让代码更清晰。那么这里的公式也能简写为

这样就简洁多了,类似地,终点的导数结果为

y's,y'e这两个导数值的意义是圆弧在S和E处的切线斜率,如下图的红线和蓝线所示。

然后我们算一下它们在b趋于0的时候等于多少。

它们在凸度趋于0的时候都等于起点和终点连线的斜率,跟我们的期望完全一致。

然而问题并没到此结束,因为算出来的切线没有方向,而进行角度排序的时候我们需要给出的是指定方向的切线向量,如下图所示,我们要的是AC'和水平线的夹角而非AC''

切线斜率并没有给出它们的方向,所以在项目里我用的是方法1,从而更好地对x和y的方向分别进行把控。

那么此处我就不在推导的情况下给出切线向量的结果,其实只是把导数结果拆出来,并且根据不同情况对xy给出不同的符号

起点的切线向量为

终点的切线向量为

跟导数的分子分母对照下,可以发现,起点刚好是把分子分母拆开,而终点则是把分子分母拆开后再分别取反。所以说这地方其实还是存在着很微妙的规律,就留给读者们慢慢品味了。

下篇我会给大家讲解圆弧直线的等分公式及其在趋于直线时的极限,敬请期待!

 

 

这篇关于让微积分穿梭于工作与学习之间(17):圆弧直线在端点处的切线及其在趋于直线时的极限的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382297

相关文章

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

day-51 合并零之间的节点

思路 直接遍历链表即可,遇到val=0跳过,val非零则加在一起,最后返回即可 解题过程 返回链表可以有头结点,方便插入,返回head.next Code /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}*

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识