Elastic Observability 8.11:ES|QL、APM 中的通用分析和增强的 SLOs

2023-11-10 06:04

本文主要是介绍Elastic Observability 8.11:ES|QL、APM 中的通用分析和增强的 SLOs,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:Tom Grabowski, Katrin Freihofner, Israel Ogbole

Elastic Observability 8.11 引入了 ES|QL for Observability(技术预览版)、Universal ProfilingTM 和 Elastic APM 集成,以及针对 Elastic Observability 的新 SLO (Service Level Objective)增强功能:

  • ES|QL for Elastic Observability:Elasticsearch 查询语言 (ES|QL) 现在处于技术预览版,它可以转换、丰富和简化数据调查。 了解 ES|QL 如何与 Elastic AI Assistant 集成、轻松创建警报以及通过单个查询创建上下文洞察。
  • 使用 Elastic APM 进行通用分析:将应用程序性能问题与 APM 中的底层系统功能相关联,而无需切换上下文。 这有助于 SRE 提高可见性并缩短解决问题的时间。
  • SLO 技术预览版中添加的新功能增强了操作体验,其中包括添加仪表板作为面板、新的错误率图表、按 APM 指标进行分区的功能等等。

Elastic Observability 8.11 现已在 Elastic Cloud 上推出,这是唯一包含最新版本中所有新功能的托管 Elasticsearch® 产品。 你还可以下载 Elastic Stack 和我们的云编排产品 Elastic Cloud Enterprise 和 Elastic Cloud for Kubernetes,以获得自我管理的体验。

Elastic 8.11 中还有哪些新功能? 查看8.11公告帖子了解更多>>

ES|QL 用于可观察性

AI助手 ES|QL 增强

Elastic AI Assistant for Observability 现在包含 ES|QL 功能,允许用户使用自然语言来解释查询,并让 AI 助手提供 ES|QL 查询语法,解释查询的作用,并提供提示运行请求的查询。

ES|QL 可观测性警报

新的 ES|QL 警报规则类型已无缝集成到 Elasticsearch 规则中,现在可在 Observability 中使用。 此规则类型通过强大的 ES|QL 语言提供新的高级功能,支持复杂的警报场景和用例。 此外,用户还可以在最终确定和保存规则之前预览和分析 ES|QL 查询的结果。 如果查询返回空结果,则不会生成任何警报。

在下面的示例中,我们使用 ES|QL 查询来查找原始、未解析的 Nginx 日志中的域。 我们对错误率高于 10% 的领域感兴趣。 此查询帮助我们识别有问题的域。 我们将此查询合并到我们的 ES|QL 警报规则中,以便在发生此类问题时通知我们。

ES|QL 查询:

from high-cardinality-data-fake_stack.nginx_proxy-* | grok message "%{DATA:log_date} %{IP:client_ip} - %{DATA:user} admin-console.%{DATA:domain} to: %{DATA:host.name}:%{DATA:http_port}: \"%{DATA:request_method} %{DATA:request_path} %{DATA:http_version}\" %{NUMBER:status_code} %{NUMBER:bytes} \"%{DATA:url}\" \"%{GREEDYDATA:user_agent}\"" | eval good = to_double(to_long(status_code) < 500), bad = to_double(to_long(status_code) >= 500) | stats total_bad = sum(bad), total_good = sum(good) by domain| eval error_rate = (total_bad / (total_bad + total_good)) | WHERE error_rate > 0.1 | drop total_bad, total_good

更好地结合在一起:通用分析 (Universal Profiling) 和 APM 集成

我们很高兴地宣布,我们增加了用户快速将应用程序性能问题与底层系统功能关联起来的功能,而无需将上下文从 APM 切换到通用分析。

这种集成提供了许多好处,包括:

  • 缩短解决时间:DevOps 和 SRE 现在可以排除故障并查明生产代码中的性能和错误,具体到代码的特定部分以及需要修改和/或升级的第三方库等。 这一切都在 APM 服务视图中完成,无需切换上下文。
  • 改进的可见性:通用分析为主机上运行的所有应用程序的运行时行为提供了前所未有的代码可见性。 它分析运行你的服务的主机上的每一行代码,不仅包括你的应用程序代码,还包括内核和第三方库。 这可以帮助你识别同一主机上可能影响特定服务性能的次优库和其他进程或服务。

observability-8-11-opbeans-java

假设你正在主机上运行容器化 Java 服务。 使用 APM,你会注意到 Java 服务的性能随着时间的推移而下降。 在 APM 服务页面中,通用分析用于识别消耗最多 CPU 时间的特定函数调用。 你发现花费最多时间的函数之一是调用用于连接到 Redis 的库。

你进一步调查发现该库很旧,并且没有使用最有效的方式连接到 Redis。 你对库进行了必要的更改,Java 服务的性能就会显着提高。

除了识别次优库之外,通用分析还可用于检测同一主机上可能影响特定服务性能的其他进程或服务。 例如,你可能有一个与相关服务无关的进程,该进程正在使用大量 CPU 资源,这可能会对你的服务产生连锁反应。

通过将通用分析与 APM 集成,DevOps 和 SRE 可以更深入地了解其代码的运行时行为,并更快、更高效地识别性能瓶颈并进行故障排除。

针对 SLOs 的新增强功能

版本 8.11 中包含服务级别目标 (Service Level Objective - SLO) 的多项增强功能和性能改进。 SLO 摘要计算的性能已得到改进,增强功能允许更快地计算通过跨集群搜索查询的数据。

用户现在可以将 SLO 概述添加到仪表板,这将允许他们查看 SLO 状态以及其他相关的可视化效果。

SLO 详细信息现在包括一个带有消耗率指示器的新错误率图表,可帮助用户可视化 SLO 的近期历史记录及其变化速度。

在 8.11 中,APM 延迟和错误率的 SLI 包括跨指标类型进行分组以及对组中每个单独指标进行分区的能力。

试试看

请在发行说明中了解这些功能以及更多信息。

现有 Elastic Cloud 客户可以直接从 Elastic Cloud 控制台访问其中许多功能。 没有利用云上的 Elastic? 开始免费试用。

本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。 当前不可用的任何特性或功能可能无法按时交付或根本无法交付。

原文:Elastic Observability 8.11: ES|QL, Universal profiling in APM, and enhanced SLOs | Elastic Blog

这篇关于Elastic Observability 8.11:ES|QL、APM 中的通用分析和增强的 SLOs的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/380802

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据