Pollard_rho算法+Miller_rabin算法 大整数的分解

2023-11-10 02:18

本文主要是介绍Pollard_rho算法+Miller_rabin算法 大整数的分解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理证明这个博客写得能看懂:

https://www.cnblogs.com/fzl194/p/9047710.html

简单例题:POJ 1811 Prime Test

这里贴代码很详细的解释,方便套用

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
using namespace std;//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=20;//随机算法判定次数,S越大,判错概率越小//计算 (a*b)%c.   a,b都是long long的数,直接相乘可能溢出的
//  a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)       //快速乘计算   (a*b)%c
{a%=c;b%=c;long long ret=0;while(b){if(b&1){ret+=a;ret%=c;}a<<=1;if(a>=c)a%=c;b>>=1;}return ret;
}//计算  x^n %c  把快速幂分成这两部分写的好处,可以防止数越界
long long pow_mod(long long x,long long n,long long mod)//快速幂 计算  x^n%c
{if(n==1)return x%mod;x%=mod;long long tmp=x;long long ret=1;while(n){if(n&1) ret=mult_mod(ret,tmp,mod);tmp=mult_mod(tmp,tmp,mod);n>>=1;}return ret;
}//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{long long ret=pow_mod(a,x,n);long long last=ret;for(int i=1;i<=t;i++){ret=mult_mod(ret,ret,n);if(ret==1&&last!=1&&last!=n-1) return true;//合数last=ret;}if(ret!=1) return true;return false;
}// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;bool Miller_Rabin(long long n)
{if(n<2)return false;if(n==2)return true;if((n&1)==0) return false;//偶数long long x=n-1;long long t=0;while((x&1)==0){x>>=1;t++;}for(int i=0;i<S;i++){long long a=rand()%(n-1)+1;//rand()需要stdlib.h头文件if(check(a,n,x,t))return false;//合数}return true;
}//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始long long gcd(long long a,long long b)
{if(a==0)return 1;//???????if(a<0) return gcd(-a,b);while(b){long long t=a%b;a=b;b=t;}return a;
}long long Pollard_rho(long long x,long long c)
{long long i=1,k=2;long long x0=rand()%x;long long y=x0;while(1){i++;x0=(mult_mod(x0,x0,x)+c)%x;long long d=gcd(y-x0,x);if(d!=1&&d!=x) return d;if(y==x0) return x;if(i==k){y=x0;k+=k;}}
}
//对n进行素因子分解
void findfac(long long n)
{if(Miller_Rabin(n))//素数{factor[tol++]=n;return;}long long p=n;while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);findfac(p);findfac(n/p);
}int main()
{//srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话long long n;while(scanf("%I64d",&n)!=EOF){tol=0;findfac(n);for(int i=0;i<tol;i++)printf("%I64d ",factor[i]);printf("\n");if(Miller_Rabin(n))printf("Yes\n");else printf("No\n");}return 0;
}

 

这篇关于Pollard_rho算法+Miller_rabin算法 大整数的分解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/379829

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个