第三章:人工智能深度学习教程-基础神经网络(第二节-ANN 和 BNN 的区别)

本文主要是介绍第三章:人工智能深度学习教程-基础神经网络(第二节-ANN 和 BNN 的区别),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本文中,我们将了解单层感知器及其使用 TensorFlow 库在Python中的实现。神经网络的工作方式与我们的生物神经元的工作方式相同。

生物神经元的结构

生物神经元具有三个基本功能 

  • 接收外部信号。

  • 处理信号并增强是否需要发送信息。

  • 将信号传递给目标细胞,目标细胞可以是另一个神经元或腺体。

同样,神经网络也能发挥作用。

机器学习中的神经网络

机器学习中的神经网络

什么是单层感知器?

它是最古老且最早引入的神经网络之一。它是由弗兰克·罗森布拉特 (Frank Rosenblatt)1958 年提出的。感知器也称为人工神经网络。感知器主要用于计算AND、OR、NOR等具有二进制输入和二进制输出的逻辑门。

感知器的主要功能是:-

  • 从输入层获取输入

  • 对它们进行加权并总结。

  • 将总和传递给非线性函数以产生输出。

单层神经网络

这里的激活函数可以是sigmoid、tanh、relu等任何函数。根据需求,我们将选择最合适的非线性激活函数以产生更好的结果。现在让我们实现一个单层感知器。

单层感知器的实现

现在让我们使用 TensorFlow 库使用“MNIST”数据集实现一个单层感知器。

Step1:导入必要的库

  • Numpy – Numpy 数组非常快,可以在很短的时间内执行大量计算。

  • Matplotlib – 该库用于绘制可视化效果。

  • TensorFlow – 这是一个用于机器学习和人工智能的开源库,提供一系列函数以通过单行代码实现复杂的功能。

Python3

import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt# 开启内联绘图
%matplotlib inline

步骤 2:现在使用导入版本的张量流中的“Keras”加载数据集。

Python3

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

这段代码导入了一些常用的Python库,包括NumPy(用于数值计算)、TensorFlow(用于深度学习)、Keras(用于构建神经网络模型)以及Matplotlib(用于绘图和数据可视化)。通过 %matplotlib inline,我们可以在Jupyter Notebook或IPython环境中直接在输出单元格中显示图形,而不需要单独的窗口。

这些库的使用使得在进行深度学习和数据可视化任务时更加方便。

步骤 3:现在显示数据集中单个图像的形状和图像。图像大小包含28*28的矩阵,训练集长度为60,000,测试集长度为10,000。

Python3

# 获取训练集的长度
len(x_train)# 获取测试集的长度
len(x_test)# 获取第一个训练图像的形状
x_train[0].shape# 显示第一个训练图像
plt.matshow(x_train[0])

这段代码执行以下操作:

  1. len(x_train) 返回训练集中样本的数量。
  2. len(x_test) 返回测试集中样本的数量。
  3. x_train[0].shape 获取第一个训练图像的形状,通常是一个28x28像素的二维数组。
  4. plt.matshow(x_train[0]) 用Matplotlib库显示第一个训练图像,可以通过该图像来查看手写数字的外观。

这些操作有助于了解MNIST数据集的规模和内容,并可以用于数据预处理和可视化。

输出:

来自训练数据集的样本图像

来自训练数据集的样本图像

步骤 4:现在标准化数据集,以便快速准确地进行计算。

Python3

# 对数据集进行标准化
x_train = x_train / 255
x_test = x_test / 255# 扁平化数据集以便进行模型构建
x_train_flatten = x_train.reshape(len(x_train), 28*28)
x_test_flatten = x_test.reshape(len(x_test), 28*28)

这段代码执行以下操作:

  1. 对训练集 x_train 和测试集 x_test 进行标准化,将像素值从0到255的范围缩放到0到1的范围,这是一种常见的数据预处理步骤。

  2. 扁平化数据集,将每个图像从一个二维数组(28x28像素)转换为一个一维数组(784个像素),以便于后续的模型构建。这是因为深度学习模型通常需要输入的是一维数据。

这些操作是为了准备数据以用于深度学习模型的训练,以便更好地处理图像数据。

第5步:构建具有单层感知的神经网络。在这里我们可以观察到,该模型是一个单层感知器,仅包含一个输入层和一个输出层,不存在隐藏层。  

Python3

model = keras.Sequential([keras.layers.Dense(10, input_shape=(784,), activation='sigmoid')
])model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy']
)model.fit(x_train_flatten, y_train, epochs=5)

这段代码执行以下操作:

  1. 创建一个Keras顺序模型,该模型包含一个具有10个神经元的全连接层(keras.layers.Dense),输入形状为(784,),激活函数为'sigmoid'。这是一个简单的神经网络模型。

  2. 编译模型,指定优化器为'adam',损失函数为'sparse_categorical_crossentropy'(适用于多类别分类问题),并选择评估指标为'accuracy'(准确度)。

  3. 使用训练数据 x_train_flatten 和相应的标签 y_train 对模型进行训练,训练周期数为5(epochs=5)。

这些操作构建了一个简单的神经网络模型,并使用训练数据对其进行了训练,以便用于多类别分类任务,例如手写数字识别。

输出:

每个时期的训练进度

在训练过程中,通常会产生一系列的训练日志,包括损失和准确度等信息。这些信息会在训练的每个周期(epoch)后显示。由于这些信息的输出取决于您的运行环境,我无法提供确切的训练输出。您可以将代码放入一个Jupyter Notebook或Python脚本中运行以查看详细的训练输出。

通常,您可以期望在每个周期的训练输出中看到损失值和准确度的变化,以便跟踪模型的训练进展。当训练完成后,您可以使用模型进行预测,并评估其性能,例如在测试数据上计算准确度。这些步骤通常会在训练后的代码中进行。如果您有特定的输出或问题,可以提供更多详细信息,以便我能够提供更具体的帮助。

步骤6:输出模型在测试数据上的准确率。

Python3

model.evaluate(x_test_flatten, y_test)

这段代码执行了模型的评估操作,使用测试数据 x_test_flatten 和相应的测试标签 y_test 来计算模型在测试数据上的性能指标。这些性能指标通常包括损失值和准确度等,用于衡量模型在测试数据上的表现。评估的结果将根据模型的性能和测试数据而异,通常以一个包含指标值的列表返回。

输出:

[损失值, 准确度]

  • 损失值 表示模型在测试数据上的损失值,通常是一个非负数,表示模型对测试数据的拟合程度。
  • 准确度 表示模型在测试数据上的准确度,通常以百分比形式表示,表示模型在测试数据中正确分类的比例。

具体的数值将根据模型的训练和测试数据集而有所不同。您可以运行这段代码以查看实际的输出结果,以便了解模型在测试数据上的性能。

这篇关于第三章:人工智能深度学习教程-基础神经网络(第二节-ANN 和 BNN 的区别)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/376022

相关文章

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

go 指针接收者和值接收者的区别小结

《go指针接收者和值接收者的区别小结》在Go语言中,值接收者和指针接收者是方法定义中的两种接收者类型,本文主要介绍了go指针接收者和值接收者的区别小结,文中通过示例代码介绍的非常详细,需要的朋友们下... 目录go 指针接收者和值接收者的区别易错点辨析go 指针接收者和值接收者的区别指针接收者和值接收者的

售价599元起! 华为路由器X1/Pro发布 配置与区别一览

《售价599元起!华为路由器X1/Pro发布配置与区别一览》华为路由器X1/Pro发布,有朋友留言问华为路由X1和X1Pro怎么选择,关于这个问题,本期图文将对这二款路由器做了期参数对比,大家看... 华为路由 X1 系列已经正式发布并开启预售,将在 4 月 25 日 10:08 正式开售,两款产品分别为华

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas