2.4 - 网络协议 - TCP协议工作原理,报文格式,抓包实战,UDP报文,UDP检错原理

本文主要是介绍2.4 - 网络协议 - TCP协议工作原理,报文格式,抓包实战,UDP报文,UDP检错原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

「作者主页」:士别三日wyx
「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者
「推荐专栏」:对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》

TCP协议

  • 1、TCP协议工作原理
  • 2、TCP协议报文格式
  • 3、UDP协议报文格式
  • 4、TCP协议抓包分析
  • 5、TCP协议如何保证可靠性
    • 5.1、粘包/拆包/半包
    • 5.2、滑动窗口
    • 5.3、重传机制
  • 6、UDP协议检错原理

TCP(Transmission Control Protocol)是「传输控制协议」,通过「面向连接」的方式,提供可靠的、端到端的字节流传输服务。

UDP(User Datagram Protocol)是「用户数据包协议」,无连接传输协议,提供简单不可靠的数据传送服务。

因为IP协议只负责路由和转发,所以需要TCP协议在IP协议的基础上实现数据传输的「可靠性」

1、TCP协议工作原理

为了保证传输的安全性,TCP在传输前,会通过三次握手「建立连接」

在这里插入图片描述

  • 第一次握手:客户端向服务器发送 SYN(seq=x),请求建立连接。
  • 第二次握手:服务器收到SYN,响应 SYN(seq=y)和 ACK(ack=x+1),表示同意建立连接。
  • 第三次握手:客户端收到响应后,返回一个ACK(ack=y+1),并打开客户端到服务器的单向连接。
  • 服务器收到响应后,也会打开服务器到客户端的单向连接,两个方向的连接都打开了,就可以传输数据了。

三次握手时涉及的几个状态:

  • CLOSED:连接关闭状态。
  • LISTEN:监听状态。
  • SYN-SENT:SYN发送状态。
  • SYN-RCVD:SYN接收状态。
  • ESTABLISHED:连接建立状态。

数据传输完成后,TCP会通过四次挥手「断开连接」(TCP连接是全双工,两个方向都得断开)
在这里插入图片描述

  • 第一次挥手:客户端传输完数据后,发一个FIN给服务端,请求断开连接。
  • 第二次挥手:服务端收到请求后,响应一个ACK,然后准备关闭服务端到客户端的连接。
  • 第三次挥手:服务端的数据也传输完了,也发一个FIN给客户端,请求断开连接。
  • 第四次挥手:客户端收到后,也响应一个ACK给服务端,然后启动一个定时器,定时器结束后关闭客户端到服务端的连接。
  • 服务端收到确认请求后,直接关闭服务端到客户端的连接。等两个方向的连接都关闭后,TCP连接就关闭了。

提示:这里的客户端和服务器是指角色,谁发起,谁就是客户端;谁接收,谁就是服务端。

端到端的意思是:TCP连接面向的是通信的两个端点,不考虑中间网段和节点。


2、TCP协议报文格式

TCP会把应用层的数据加上TCP首部,传给网络层。

在这里插入图片描述

重点看TCP首部的格式。

在这里插入图片描述

我们根据TCP协议的数据包解释一下各个字段的作用

在这里插入图片描述

  • Source Port:源端口【16位】,发送方的端口。
  • Destination Port:目的端口【16位】,接收方的端口。与目的端口确定一个唯一的TCP连接。
  • Sequence number:序号【32位】,发送数据包中的第一个字节的序列号。在数据分片、重组时保证顺序。
  • Ackowledgment number:确认号【32位】,下一个希望收到的数据的开始序列号(已经收到的数据的字节长度加1)。在数据分片、重组时保证顺序。
  • Reserved:数据偏移【4位】,数据段开始地址的偏移值
  • Nonce、CWR、ECN-Echo:保留位【6位】
  • Urgent:紧急URG【1位】,为1表示高优先级数据包,需要尽快发送。
  • Acknowledgment:确认ACK【1位】,为1表示确认号字段有效。用于TCP连接,建立连接后,所有报文的ACK都是1。
  • Push:推送PSH【1位】,为1表示接收方尽快将这个报文交给应用层而不用等待缓冲区装满
  • Reset:复位RST【1位】,为1表示出现严重错误,需要重新建立连接。用于TCP连接。
  • Syn:复位SYN【1位】,建立连接时同步序号。用于TCP连接,SYN=1和ACK=0表示连接的请求,SYN=1和ACK=1表示接收连接的请求
  • Fin:终止FIN【1位】,为1表示报文发送方不在发送数据,请求释放单向链接。用于TCP连接。
  • Window:窗口【16位】,从确认号开始,可以接收的字节数,用于流量控制
  • Checksum:检验和【16位】,用来检验数据包的完整性
  • Urgent Pointer:紧急指针【16位】,报文段中紧急数据的最后一个字节的序号,URG=1时有效。

3、UDP协议报文格式

UDP会把应用层的数据加上UDP首部,传给网络层

在这里插入图片描述
UDP的报文明显比TCP少很多字段,所以它不保证数据的可靠性。

在这里插入图片描述
根据UDP协议的数据包解释一下各个字段的作用。

在这里插入图片描述

  • Source Port:源端口【16位】,发送方的端口
  • Destination Port:目的端口【16位】,接收方的端口
  • Length:长度【16位】,整个数据报的长度(UDP首部 + 数据)
  • Checksum:检验和【16位】,检测数据是否有误

4、TCP协议抓包分析

Wireshark开启抓包,浏览器访问百度,cmd ping www.baidu.com 获取百度IP。

在这里插入图片描述

过滤TCP协议的数据包 tcp and ip.addr==110.242.68.3

在这里插入图片描述

三个数据包,每个包对应一次握手

  • 第一次握手:我192.168.2.121向百度 110.242.68.3 发送了一个 SYN(seq=0)
    在这里插入图片描述
  • 第二次握手:百度110.242.68.3向我192.168.2.121响应了一个SYN(seq=0),ACK(ack=0+1)
    在这里插入图片描述
  • 第三次握手:我向百度发送了一个ACK(ack=0+1)
    在这里插入图片描述

5、TCP协议如何保证可靠性

为了避免网络拥塞,TCP协议使用粘包、拆包、半包等机制实现流量控制。

5.1、粘包/拆包/半包

比如来一个包就马上发送,当接收方性能较差时,就会造成「网络拥塞」;或者有很多数据部分只有1个字节的数据包,就比较「浪费资源」。这时候,TCP就会用粘包和拆包来解决(性能好的设备可能会关闭此功能)。

  • MTU:最大传输单元,链路层发送的数据帧的数据部分(默认)最多只有1500字节。
  • MSS:TCP报文的数据部分的最大值,MSS = MTU(1500字节)- IP首部(20字节)- TCP首部(20字节)
  • 粘包:将几个比较小的TCP数据包合并成一个包再发送。每个小包之间用分隔符间隔,拆包时可以按照分隔符拆分。
  • 收到上一个包的确认(ACK)之后,再发下一个包。等待的时间可以用来粘包。
  • 粘包后的大小不能超过MSS。
  • 默认超时时间200ms,超过后即使数据包很小,也会直接发送。
  • 半包:对于超过MSS的数据包,会拆分成多个小包发送,接受后再重组。

5.2、滑动窗口

TCP报文的Window字段表示窗口大小。

当接收方的数据太多处理不过来的时候,就在返回的报文里把窗口写小,发送方会根据窗口大小选择调整发送的速度。

  • 发送方发送的每一个数据包,接收方都会返回一个ACK进行确认,发送方可以根据这个来判断数据包是否处理完毕。
  • 接收方在处理完数据后,才会返回确认ACK。接收方可以同时处理多个数据包,并根据设备性能,在返回的报文里,调整窗口大小。
  • 发送方根据窗口大小,调整数据包的发送速度。

5.3、重传机制

为了避免丢包的问题,TCP协议会把丢失的包重新发送。当出现以下两种情况时,发送方会判定数据包丢失,进行重传。

  • 超时重传:超过了超时时间后,仍然没有收到确认ACK。
  • 快速重传:连续收到三次同一个包的确认ACK。

6、UDP协议检错原理

UDP没有TCP那些花里胡哨的功能,只有一个差错控制。

UDP检验和利用伪首部来计算。

伪首部添加在UDP首部的左侧,只在计算检验和的时候添加,不参与数据的传输
在这里插入图片描述
数据在经过传输层时,会在UDP数据报头部添加伪首部,将伪首部 + UDP首部 + 数据部分转换为二进制并求和,将计算出的16位二进制反码结果填充到UDP检验和,去掉伪首部后发送出去。
在这里插入图片描述
接收方收到数据后,会在数据报头部添加伪首部,再次将伪首部 + UDP首部 + 数据部分转换为二进制并求和,如果结果全为1,则判定数据没有差错;否则就丢弃数据报或者发送给应用层并提示数据出错。

为什么这个检错机制可以检错呢?

在一次数据传输过程中,UDP协议会进行两次二进制求和,发送端计算一次、接收端计算一次。

发送端的UDP数据报和接收端的UDP数据报只有一处地方不同,就是检验和字段。

发送端计算时,检验和字段没有数据,必须先填充0。
在这里插入图片描述
接收端计算时,检验和字段有数据,因为发送端将二进制的求和结果反码填充到了检验和字段。
在这里插入图片描述
如果数据传输没有差错,求和的结果会全是1,但如果其中有一个数据发生差错,结果就不会全是1,由此可以检验差错。

这篇关于2.4 - 网络协议 - TCP协议工作原理,报文格式,抓包实战,UDP报文,UDP检错原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/375713

相关文章

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

QT实现TCP客户端自动连接

《QT实现TCP客户端自动连接》这篇文章主要为大家详细介绍了QT中一个TCP客户端自动连接的测试模型,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录版本 1:没有取消按钮 测试效果测试代码版本 2:有取消按钮测试效果测试代码版本 1:没有取消按钮 测试效果缺陷:无法手动停

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount