线性代数(二)| 行列式性质 求值 特殊行列式 加边法 归纳法等多种方法

本文主要是介绍线性代数(二)| 行列式性质 求值 特殊行列式 加边法 归纳法等多种方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 性质
    • 1.1 重要性质梳理
      • 1.1.1 转置和初等变换
      • 1.1.2加法行列式可拆分
      • 1.1.3 乘积行列式可拆分
    • 1.2 行列式性质的应用
      • 1.2.1 简化运算
      • 1.2.2 将行列式转换为(二)中的特殊行列式
  • 2 特殊行列式
    • 2.1 上三角或下三角行列式
    • 2.2 三叉行列式
    • 2.3 行列式行和(列和)为定值
    • 2.4 对称行列式和反对称行列式
    • 2.5 范德蒙行列式
  • 3.求行列式值的基本方法
    • 3.1 行列式定义
    • 3.2 行列式性质
    • 3.3 行列式的展开
    • 3.4 加边法
    • 3.5 归纳法

​ 方阵行列式包含着大量的信息

​ 首先它直接告诉我们行列式是否可逆,如果为零则不可逆,如果不为零则可逆

​ 它可

1. 性质

1.1 重要性质梳理

1.1.1 转置和初等变换

  1. 对于转置,值不变 | A T A^T AT|=| A A A|

  2. 对于交换行列式的任意两行,行列式值变号

    ​ 可以证明若某两行相同,则行列式值为0

  3. 对于某一行(列)乘一个数K,等于给矩阵的行列式乘K

    ​ 注意区别|kA|与 k|A| 其中 $|kA|=k^n|A| $ (A为n阶矩阵)

  4. 对于某一行(列)加上另一行(列)的k倍,行列式值不变

1.1.2加法行列式可拆分

​ 行列式的某一行都为两项之和,可以拆分为两行项之和(和的那一行分开,其余行保持不变)。

1.1.3 乘积行列式可拆分

设 A B 为n阶方阵,则|AB|=|A||B| 更一般的有|A1A2…As|=|A1||A2|…|As|

1.2 行列式性质的应用

1.2.1 简化运算

解:

1.2.2 将行列式转换为(二)中的特殊行列式

​ 通过行列式变换转换为特殊行列式

2 特殊行列式

2.1 上三角或下三角行列式

​ 行列式的值为对象线上的元素的乘积,这个可以用行列式的定义来证明,它是一个很重要的行列式,三叉行列式,或者是行列式和为定值的行列式最后本质上都转为了这个特殊行列式

例:

∣ 1 1 2 3 0 − 1 1 7 0 0 3 2 0 0 0 4 ∣ = 1 × − 1 × 3 × 4 = − 12 \begin{vmatrix}1&1&2&3&\\0&-1&1&7\\0&0&3&2\\0&0&0&4\end{vmatrix}=1×-1×3×4=-12 1000110021303724 =1×1×3×4=12

2.2 三叉行列式

​ 本质上需要转换为1 中的上三角或下三角行列式 KP88 1T

​ 例:计算n阶行列式 ∣ 1 1 1 ⋯ 1 − 1 2 0 ⋯ 0 − 1 0 3 ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ 0 − 1 0 ⋯ 0 n ∣ \begin{vmatrix}1&1&1&\cdots&1\\-1&2&0&\cdots&0\\-1&0&3&\ddots&\vdots\\\vdots&\vdots&\ddots&\ddots&0\\-1&0&\cdots&0&n\end{vmatrix} 111112001030100n

​ 解:解决办法就是把主对角线下(上)的元素都变为零,对于本题的话,左下角都为-1,因而可以把第二列乘二分之一加到第一列上去,第三列乘三分之一加到第一列上去……可以得到如下 ∣ 1 + 1 2 + 1 3 + . . . + 1 n 1 1 ⋯ 1 0 2 0 ⋯ 0 0 0 3 ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ 0 0 0 ⋯ 0 n ∣ \begin{vmatrix}1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}&1&1&\cdots&1\\0&2&0&\cdots&0\\0&0&3&\ddots&\vdots\\\vdots&\vdots&\ddots&\ddots&0\\0&0&\cdots&0&n\end{vmatrix} 1+21+31+...+n100012001030100n

​ 进而采用主对角线上元素相乘即可得到结果 n ! ( 1 + 1 2 + 1 3 + . . . + 1 n ) n! (1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}) n!(1+21+31+...+n1)

2.3 行列式行和(列和)为定值

如果行和或者列和为定值时,一般采取的方法是将各行(列)加到某一行(列),提取公因式

​ 例:

​ 解:

2.4 对称行列式和反对称行列式

​ (1)反对称行列式 主对角线上全为零,主对角上下对应元素相反

​ 如: ∣ 0 1 2 − 1 0 3 − 2 − 3 0 ∣ \begin{vmatrix}0&1&2 \\-1&0&3\\-2&-3&0\end{vmatrix} 012103230 反对称行列式有一个重要性质 A T = − A A^T=-A AT=A 基于这一性质,我们可以推出若反对称行列式为奇数阶 ,则行列式值为零,左面这个行列式即为零 ,证明 因为 A T = − A A^T=-A AT=A 所以 ∣ A T ∣ = ∣ − A ∣ = ( − 1 ) n ∣ A ∣ |A^T|=|-A|=(-1)^n|A| AT=A=1nA 当n为奇数,则有 ∣ A T ∣ = − ∣ A ∣ |A^T|=-|A| AT=A 又因为转置行列式值不变 ,所以 ∣ A ∣ = − ∣ A ∣ |A|=-|A| A=A 则|A|只能为0

​ (2)对称行列式 主对角线上元素无要求,主对角上下对应元素相等

​ 如: ∣ 1 1 2 1 2 3 2 3 0 ∣ \begin{vmatrix}1&1&2 \\1&2&3\\2&3&0\end{vmatrix} 112123230

2.5 范德蒙行列式

​ 范德蒙行列式

3.求行列式值的基本方法

3.1 行列式定义

​ 用行列式定义求的矩阵具有较多的零元素的特征,相应元素取过之后所在列所在行就不能再取元素了

例1 求A= ∣ 1 1 0 0 2 − 1 0 0 0 0 3 0 0 0 4 4 ∣ \begin{vmatrix}1&1&0&0&\\2&-1&0&0\\0&0&3&0\\0&0&4&4\end{vmatrix} 1200110000340004

​ 解: A=1×(-1)×3×4+(-1)×1×2×3×4=-36

拓展C P9 1T 3T

3.2 行列式性质

​ 利用(一)中的行列式性质,如加法行列式可拆性,基本变换等结合一些行列式两行成比例结果为零的一些推论

例2 求A= ∣ a 2 ( a + 1 ) 2 ( a + 2 ) 2 ( a + 3 ) 2 b 2 ( b + 1 ) 2 ( b + 2 ) 2 ( b + 3 ) 2 c 2 ( c + 1 ) 2 ( c + 2 ) 2 ( c + 3 ) 2 d 2 ( d + 1 ) 2 ( d + 2 ) 2 ( d + 3 ) 2 ∣ \begin{vmatrix}a^2&(a+1)^2&(a+2)^2 &(a+3)^2\\b^2&(b+1)^2&(b+2)^2 &(b+3)^2\\c^2&(c+1)^2&(c+2)^2 &(c+3)^2\\d^2&(d+1)^2&(d+2)^2 &(d+3)^2\\\end{vmatrix} a2b2c2d2(a+1)2(b+1)2(c+1)2(d+1)2(a+2)2(b+2)2(c+2)2(d+2)2(a+3)2(b+3)2(c+3)2(d+3)2

​ 解: ∣ a 2 ( a + 1 ) 2 ( a + 2 ) 2 ( a + 3 ) 2 b 2 ( b + 1 ) 2 ( b + 2 ) 2 ( b + 3 ) 2 c 2 ( c + 1 ) 2 ( c + 2 ) 2 ( c + 3 ) 2 d 2 ( d + 1 ) 2 ( d + 2 ) 2 ( d + 3 ) 2 ∣ \begin{vmatrix}a^2&(a+1)^2&(a+2)^2 &(a+3)^2\\b^2&(b+1)^2&(b+2)^2 &(b+3)^2\\c^2&(c+1)^2&(c+2)^2 &(c+3)^2\\d^2&(d+1)^2&(d+2)^2 &(d+3)^2\\\end{vmatrix} a2b2c2d2(a+1)2(b+1)2(c+1)2(d+1)2(a+2)2(b+2)2(c+2)2(d+2)2(a+3)2(b+3)2(c+3)2(d+3)2 = ∣ a 2 a 2 + 2 a + 1 a 2 + 4 a + 4 a 2 + 6 a + 9 b 2 b 2 + 2 b + 1 b 2 + 4 b + 4 b 2 + 6 b + 9 c 2 c 2 + 2 c + 1 c 2 + 4 c + 4 c 2 + 6 c + 9 d 2 d 2 + 2 d + 1 d 2 + 4 d + 4 d 2 + 6 d + 9 ∣ \begin{vmatrix}a^2&a^2+2a+1&a^2+4a+4 &a^2+6a+9\\b^2&b^2+2b+1&b^2+4b+4 &b^2+6b+9\\c^2&c^2+2c+1&c^2+4c+4 &c^2+6c+9\\d^2&d^2+2d+1&d^2+4d+4 &d^2+6d+9\\\end{vmatrix} a2b2c2d2a2+2a+1b2+2b+1c2+2c+1d2+2d+1a2+4a+4b2+4b+4c2+4c+4d2+4d+4a2+6a+9b2+6b+9c2+6c+9d2+6d+9

​ 将右边完全拆开后,一共有3×3×3=27种组合相加,但每种组合总会有成比例的两列,因而最后行列式=0

3.3 行列式的展开

行列式的展开本质是降阶,是一种非常重要的方法,降阶的话有可以得到二阶三阶行列式方便计算,或者是我们可以得到一种递推关系式(n阶矩阵)

(1)如 ∣ 1 1 3 0 2 − 1 1 0 5 6 3 0 1 2 4 4 ∣ \begin{vmatrix}1&1&3&0&\\2&-1&1&0\\5&6&3&0\\1&2&4&4\end{vmatrix} 1251116231340004 可按最后一列展开,则可以直接降解为三阶行列式,我们发现某一行(列)的零越多越好,多一个零就少算一个行列式。

有时候某一列的零不是很多,但是我们又没有其他好的方法计算,我们可以先进行一些变换,使得某一列或某一行的零变多,进而简化运算,如要求 ∣ 1 1 3 1 2 − 1 1 2 5 6 3 3 1 2 4 4 ∣ \begin{vmatrix}1&1&3&1&\\2&-1&1&2\\5&6&3&3\\1&2&4&4\end{vmatrix} 1251116231341234 我们可以先用第二行减去二倍的第一行,第三行减去三倍的第一行,第四行减去四倍的第一行,得到 ∣ 1 1 3 1 0 − 3 − 5 0 2 3 − 6 0 − 3 − 2 − 8 0 ∣ \begin{vmatrix}1&1&3&1&\\0&-3&-5&0\\2&3&-6&0\\-3&-2&-8&0\end{vmatrix} 1023133235681000 按最后一列展开即可降阶为三阶**-** ∣ 0 − 3 − 5 2 3 − 6 − 3 − 2 − 8 ∣ \begin{vmatrix}0&-3&-5&\\2&3&-6&\\-3&-2&-8\end{vmatrix} 023332568 记得前面的负号不要丢掉,再按第一列展开即可得到两个二阶行列式

(2)对于n阶矩阵,我们不可能降阶到二阶三阶,但是我们可以找到递推关系式进而求出答案

3.4 加边法

​ 基于行列式展开让行列式升阶

3.5 归纳法

​ 解:

这篇关于线性代数(二)| 行列式性质 求值 特殊行列式 加边法 归纳法等多种方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/375600

相关文章

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Java 中实现异步的多种方式

《Java中实现异步的多种方式》文章介绍了Java中实现异步处理的几种常见方式,每种方式都有其特点和适用场景,通过选择合适的异步处理方式,可以提高程序的性能和可维护性,感兴趣的朋友一起看看吧... 目录1. 线程池(ExecutorService)2. CompletableFuture3. ForkJoi

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域