EmguCV实现颜色物体识别与追踪(CvInvoke.InRange()函数)

2023-11-09 06:20

本文主要是介绍EmguCV实现颜色物体识别与追踪(CvInvoke.InRange()函数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 说明
    • Code
    • 效果

说明

1、在HSV颜色空间下进行颜色追踪,RGB颜色空间每个通道分量受亮度影响大,HSV颜色空间受亮度影响较小;
2、EmguCV与OpenCV的HSV取值: H:0-180 ; S: 0-255; V: 0-255(注意取值范围);
在这里插入图片描述
3、常用的HSV参考值:
在这里插入图片描述
4、使用Inrange()函数在HSV空间中寻找HSV在某一范围内的值,输出掩膜,作为寻找结果。

Code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;using Emgu.CV;
using Emgu.CV.Util;
using Emgu.CV.Structure;
using Emgu.CV.CvEnum;
using Emgu.Util;
using System.Drawing;namespace lesson28_console
{class Program{static void Main(string[] args){///图片颜色识别//Mat srcImg = CvInvoke.Imread(@"C:\Users\hello\Desktop\EmguCVDemo\lesson28\lesson28_console\bin\Debug\opencv-logo-white.png");//CvInvoke.Imshow("input", srcImg);//Mat hsvImg = new Mat();//Mat mask = new Mat();//double h_min = 0, s_min = 43, v_min = 46;//double h_max = 10, s_max = 255, v_max = 255;//ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));//ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));//CvInvoke.CvtColor(srcImg, hsvImg, ColorConversion.Bgr2Hsv);//CvInvoke.InRange(hsvImg, hsv_min, hsv_max, mask);   //输出为符合要求的图像掩膜//CvInvoke.MedianBlur(mask, mask, 5);//CvInvoke.Imshow("mask", mask);//VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();//VectorOfRect hierarchy = new VectorOfRect();发现轮廓//CvInvoke.FindContours(mask, contours,hierarchy, RetrType.External, ChainApproxMethod.ChainApproxNone);//VectorOfVectorOfPoint contours_approx = new VectorOfVectorOfPoint(contours.Size);//Rectangle rect = new Rectangle();//for (int i =0; i < contours.Size;i++)//{//    CvInvoke.ApproxPolyDP(contours[i], contours_approx[i], 3, true);//    CvInvoke.DrawContours(srcImg, contours_approx, i, new MCvScalar(255, 0, 0), 1, LineType.EightConnected, hierarchy, 0);//    CvInvoke.Imshow("red", srcImg);//    rect = CvInvoke.BoundingRectangle(contours_approx[i]);//    CvInvoke.Rectangle(srcImg, rect, new MCvScalar(0, 0, 255), 1);//    CvInvoke.PutText(srcImg, "red", new Point(rect.X, rect.Y), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));//}//CvInvoke.WaitKey(0);///视频绿色物体追踪//VideoCapture cap = new VideoCapture("1.mp4");//if(!cap.IsOpened)     //打开文件失败//{//    Console.WriteLine("Open video failed!");//    return;//}//Mat frame = new Mat();//while(true)//{//    //frame = cap.QueryFrame();//    cap.Read(frame);//    if(frame.IsEmpty)//    {//        Console.WriteLine("frame is empty...");//        break;//    }//    Mat hsvimg = new Mat();//    Mat mask = new Mat();//    double h_min = 35, s_min = 110, v_min = 106;//    double h_max = 77, s_max = 255, v_max = 255;//    ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));//    ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));//    CvInvoke.CvtColor(frame, hsvimg, ColorConversion.Bgr2Hsv);//    CvInvoke.InRange(hsvimg, hsv_min, hsv_max, mask);//    CvInvoke.MedianBlur(mask, mask, 5);//    CvInvoke.Imshow("mask", mask);//    VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();//    VectorOfRect hierachy = new VectorOfRect();//    CvInvoke.FindContours(mask, contours, hierachy, RetrType.External, ChainApproxMethod.ChainApproxNone);//    for(int i = 0; i< contours.Size; i++)//    {//        Rectangle rect = CvInvoke.BoundingRectangle(contours[i]);//        if (rect.Width < 10 || rect.Height < 10)                //对于太小的外接矩形,删除掉//            continue;//        CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);//        CvInvoke.PutText(frame, "green", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));//    }//    CvInvoke.Imshow("hsv_track", frame);//    if(CvInvoke.WaitKey(30) == 27)//    {//        break;//    }//}///蓝色物体追踪//VideoCapture cap = new VideoCapture("1.mp4");//if (!cap.IsOpened)     //打开文件失败//{//    Console.WriteLine("Open video failed!");//    return;//}//Mat frame = new Mat();//while (true)//{//    //frame = cap.QueryFrame();   //实验读取到最后一帧有异常//    cap.Read(frame);//    if (frame.IsEmpty)//    {//        Console.WriteLine("frame is empty...");//        break;//    }//    Mat hsvimg = new Mat();//    Mat mask = new Mat();//    double h_min = 81, s_min = 77, v_min = 93;//    double h_max = 125, s_max = 255, v_max = 255;//    ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));//    ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));//    //!!!因为图像某一部分存在干扰,所以设置感兴趣区域,只追踪在规定范围内的颜色物体//    Mat frameROI = new Mat(frame, new Rectangle(0, 0, 350, 353));  //将干扰区域切除//    CvInvoke.CvtColor(frameROI, hsvimg, ColorConversion.Bgr2Hsv);//    CvInvoke.InRange(hsvimg, hsv_min, hsv_max, mask);//    CvInvoke.MedianBlur(mask, mask, 5);//    CvInvoke.Imshow("mask", mask);//    VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();//    VectorOfRect hierachy = new VectorOfRect();//    CvInvoke.FindContours(mask, contours, hierachy, RetrType.External, ChainApproxMethod.ChainApproxNone);//    for (int i = 0; i < contours.Size; i++)//    {//        Rectangle rect = CvInvoke.BoundingRectangle(contours[i]);//        if (rect.Width < 10 || rect.Height < 10)                //对于太小的外接矩形,删除掉//            continue;//        CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);//        CvInvoke.PutText(frame, "blue", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));//    }//    CvInvoke.Imshow("hsv_track", frame);//    if (CvInvoke.WaitKey(30) == 27)//    {//        break;//    }//}///红色绿色同时追踪//VideoCapture cap = new VideoCapture("1.mp4");//if (!cap.IsOpened)     //打开文件失败//{//    Console.WriteLine("Open video failed!");//    return;//}//Mat frame = new Mat();//while (true)//{//    //frame = cap.QueryFrame();   //实验读取到最后一帧有异常//    cap.Read(frame);//    if (frame.IsEmpty)//    {//        Console.WriteLine("frame is empty...");//        break;//    }//    Mat hsvimg = new Mat();//    Mat mask_red = new Mat();//    Mat mask_green = new Mat();//    double h_min_red = 0, s_min_red = 127, v_min_red = 128;//    double h_max_red = 10, s_max_red = 255, v_max_red = 255;//    double h_min_green = 35, s_min_green = 110, v_min_green = 106;//    double h_max_green = 77, s_max_green = 255, v_max_green = 255;//    ScalarArray hsv_min_red = new ScalarArray(new MCvScalar(h_min_red, s_min_red, v_min_red));//    ScalarArray hsv_max_red = new ScalarArray(new MCvScalar(h_max_red, s_max_red, v_max_red));//    ScalarArray hsv_min_green = new ScalarArray(new MCvScalar(h_min_green, s_min_green, v_min_green));//    ScalarArray hsv_max_green = new ScalarArray(new MCvScalar(h_max_green, s_max_green, v_max_green));               //    CvInvoke.CvtColor(frame, hsvimg, ColorConversion.Bgr2Hsv);//    CvInvoke.InRange(hsvimg, hsv_min_red, hsv_max_red, mask_red);//    CvInvoke.InRange(hsvimg, hsv_min_green, hsv_max_green, mask_green);//    CvInvoke.MedianBlur(mask_red, mask_red, 5);//    CvInvoke.MedianBlur(mask_green, mask_green, 5);//    Mat mask = new Mat();//    CvInvoke.Add(mask_red, mask_green, mask);  //掩膜相加//    CvInvoke.Imshow("mask", mask);          //显示合在一起的掩膜//    VectorOfVectorOfPoint contours_red = new VectorOfVectorOfPoint();//    VectorOfRect hierachy_red = new VectorOfRect();//    CvInvoke.FindContours(mask_red, contours_red, hierachy_red, RetrType.External, ChainApproxMethod.ChainApproxNone);//    for (int i = 0; i < contours_red.Size; i++)//    {//        Rectangle rect = CvInvoke.BoundingRectangle(contours_red[i]);//        if (rect.Width < 10 || rect.Height < 10)                //对于太小的外接矩形,删除掉//            continue;//        CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);//        CvInvoke.PutText(frame, "red", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));//    }//    VectorOfVectorOfPoint contours_green = new VectorOfVectorOfPoint();//    VectorOfRect hierachy_green = new VectorOfRect();//    CvInvoke.FindContours(mask_green, contours_green, hierachy_green, RetrType.External, ChainApproxMethod.ChainApproxNone);//    for (int i = 0; i < contours_green.Size; i++)//    {//        Rectangle rect = CvInvoke.BoundingRectangle(contours_green[i]);//        if (rect.Width < 10 || rect.Height < 10)                //对于太小的外接矩形,删除掉//            continue;//        CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);//        CvInvoke.PutText(frame, "green", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));//    }//    CvInvoke.Imshow("hsv_track", frame);//    if (CvInvoke.WaitKey(30) == 27)//    {//        break;//    }//}///手掌肤色提取Mat src = CvInvoke.Imread("2.bmp");double h_min = 0, s_min = 70, v_min = 70;       //手的HSV颜色分布double h_max = 15, s_max = 255, v_max = 255;ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));Mat hsvimg = new Mat();Mat mask = new Mat();CvInvoke.CvtColor(src, hsvimg, ColorConversion.Bgr2Hsv);CvInvoke.InRange(hsvimg, hsv_min, hsv_max, mask);CvInvoke.MedianBlur(mask, mask, 5);VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();VectorOfRect hierarchy = new VectorOfRect();//发现轮廓CvInvoke.FindContours(mask, contours, hierarchy, RetrType.External, ChainApproxMethod.ChainApproxNone);for(int i = 0; i< contours.Size;i++){Rectangle rect = CvInvoke.BoundingRectangle(contours[i]);if (rect.Width < 10 || rect.Height < 10)continue;CvInvoke.Rectangle(src, rect, new MCvScalar(255, 0, 0));CvInvoke.PutText(src, "hand", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 0, 255));}CvInvoke.Imshow("hsv_track", src);CvInvoke.WaitKey(0);}}
}

效果

1、寻找图像红色部分:
在这里插入图片描述
掩膜:
在这里插入图片描述
2、寻找红色部分:
在这里插入图片描述
3、寻找视频中的绿色部分:

在这里插入图片描述
4、寻找视频中红色与绿色物体:
在这里插入图片描述
5、根据手的HSV特征寻找手:
在这里插入图片描述
在这里插入图片描述

这篇关于EmguCV实现颜色物体识别与追踪(CvInvoke.InRange()函数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374416

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2