EmguCV实现颜色物体识别与追踪(CvInvoke.InRange()函数)

2023-11-09 06:20

本文主要是介绍EmguCV实现颜色物体识别与追踪(CvInvoke.InRange()函数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 说明
    • Code
    • 效果

说明

1、在HSV颜色空间下进行颜色追踪,RGB颜色空间每个通道分量受亮度影响大,HSV颜色空间受亮度影响较小;
2、EmguCV与OpenCV的HSV取值: H:0-180 ; S: 0-255; V: 0-255(注意取值范围);
在这里插入图片描述
3、常用的HSV参考值:
在这里插入图片描述
4、使用Inrange()函数在HSV空间中寻找HSV在某一范围内的值,输出掩膜,作为寻找结果。

Code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;using Emgu.CV;
using Emgu.CV.Util;
using Emgu.CV.Structure;
using Emgu.CV.CvEnum;
using Emgu.Util;
using System.Drawing;namespace lesson28_console
{class Program{static void Main(string[] args){///图片颜色识别//Mat srcImg = CvInvoke.Imread(@"C:\Users\hello\Desktop\EmguCVDemo\lesson28\lesson28_console\bin\Debug\opencv-logo-white.png");//CvInvoke.Imshow("input", srcImg);//Mat hsvImg = new Mat();//Mat mask = new Mat();//double h_min = 0, s_min = 43, v_min = 46;//double h_max = 10, s_max = 255, v_max = 255;//ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));//ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));//CvInvoke.CvtColor(srcImg, hsvImg, ColorConversion.Bgr2Hsv);//CvInvoke.InRange(hsvImg, hsv_min, hsv_max, mask);   //输出为符合要求的图像掩膜//CvInvoke.MedianBlur(mask, mask, 5);//CvInvoke.Imshow("mask", mask);//VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();//VectorOfRect hierarchy = new VectorOfRect();发现轮廓//CvInvoke.FindContours(mask, contours,hierarchy, RetrType.External, ChainApproxMethod.ChainApproxNone);//VectorOfVectorOfPoint contours_approx = new VectorOfVectorOfPoint(contours.Size);//Rectangle rect = new Rectangle();//for (int i =0; i < contours.Size;i++)//{//    CvInvoke.ApproxPolyDP(contours[i], contours_approx[i], 3, true);//    CvInvoke.DrawContours(srcImg, contours_approx, i, new MCvScalar(255, 0, 0), 1, LineType.EightConnected, hierarchy, 0);//    CvInvoke.Imshow("red", srcImg);//    rect = CvInvoke.BoundingRectangle(contours_approx[i]);//    CvInvoke.Rectangle(srcImg, rect, new MCvScalar(0, 0, 255), 1);//    CvInvoke.PutText(srcImg, "red", new Point(rect.X, rect.Y), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));//}//CvInvoke.WaitKey(0);///视频绿色物体追踪//VideoCapture cap = new VideoCapture("1.mp4");//if(!cap.IsOpened)     //打开文件失败//{//    Console.WriteLine("Open video failed!");//    return;//}//Mat frame = new Mat();//while(true)//{//    //frame = cap.QueryFrame();//    cap.Read(frame);//    if(frame.IsEmpty)//    {//        Console.WriteLine("frame is empty...");//        break;//    }//    Mat hsvimg = new Mat();//    Mat mask = new Mat();//    double h_min = 35, s_min = 110, v_min = 106;//    double h_max = 77, s_max = 255, v_max = 255;//    ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));//    ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));//    CvInvoke.CvtColor(frame, hsvimg, ColorConversion.Bgr2Hsv);//    CvInvoke.InRange(hsvimg, hsv_min, hsv_max, mask);//    CvInvoke.MedianBlur(mask, mask, 5);//    CvInvoke.Imshow("mask", mask);//    VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();//    VectorOfRect hierachy = new VectorOfRect();//    CvInvoke.FindContours(mask, contours, hierachy, RetrType.External, ChainApproxMethod.ChainApproxNone);//    for(int i = 0; i< contours.Size; i++)//    {//        Rectangle rect = CvInvoke.BoundingRectangle(contours[i]);//        if (rect.Width < 10 || rect.Height < 10)                //对于太小的外接矩形,删除掉//            continue;//        CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);//        CvInvoke.PutText(frame, "green", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));//    }//    CvInvoke.Imshow("hsv_track", frame);//    if(CvInvoke.WaitKey(30) == 27)//    {//        break;//    }//}///蓝色物体追踪//VideoCapture cap = new VideoCapture("1.mp4");//if (!cap.IsOpened)     //打开文件失败//{//    Console.WriteLine("Open video failed!");//    return;//}//Mat frame = new Mat();//while (true)//{//    //frame = cap.QueryFrame();   //实验读取到最后一帧有异常//    cap.Read(frame);//    if (frame.IsEmpty)//    {//        Console.WriteLine("frame is empty...");//        break;//    }//    Mat hsvimg = new Mat();//    Mat mask = new Mat();//    double h_min = 81, s_min = 77, v_min = 93;//    double h_max = 125, s_max = 255, v_max = 255;//    ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));//    ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));//    //!!!因为图像某一部分存在干扰,所以设置感兴趣区域,只追踪在规定范围内的颜色物体//    Mat frameROI = new Mat(frame, new Rectangle(0, 0, 350, 353));  //将干扰区域切除//    CvInvoke.CvtColor(frameROI, hsvimg, ColorConversion.Bgr2Hsv);//    CvInvoke.InRange(hsvimg, hsv_min, hsv_max, mask);//    CvInvoke.MedianBlur(mask, mask, 5);//    CvInvoke.Imshow("mask", mask);//    VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();//    VectorOfRect hierachy = new VectorOfRect();//    CvInvoke.FindContours(mask, contours, hierachy, RetrType.External, ChainApproxMethod.ChainApproxNone);//    for (int i = 0; i < contours.Size; i++)//    {//        Rectangle rect = CvInvoke.BoundingRectangle(contours[i]);//        if (rect.Width < 10 || rect.Height < 10)                //对于太小的外接矩形,删除掉//            continue;//        CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);//        CvInvoke.PutText(frame, "blue", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));//    }//    CvInvoke.Imshow("hsv_track", frame);//    if (CvInvoke.WaitKey(30) == 27)//    {//        break;//    }//}///红色绿色同时追踪//VideoCapture cap = new VideoCapture("1.mp4");//if (!cap.IsOpened)     //打开文件失败//{//    Console.WriteLine("Open video failed!");//    return;//}//Mat frame = new Mat();//while (true)//{//    //frame = cap.QueryFrame();   //实验读取到最后一帧有异常//    cap.Read(frame);//    if (frame.IsEmpty)//    {//        Console.WriteLine("frame is empty...");//        break;//    }//    Mat hsvimg = new Mat();//    Mat mask_red = new Mat();//    Mat mask_green = new Mat();//    double h_min_red = 0, s_min_red = 127, v_min_red = 128;//    double h_max_red = 10, s_max_red = 255, v_max_red = 255;//    double h_min_green = 35, s_min_green = 110, v_min_green = 106;//    double h_max_green = 77, s_max_green = 255, v_max_green = 255;//    ScalarArray hsv_min_red = new ScalarArray(new MCvScalar(h_min_red, s_min_red, v_min_red));//    ScalarArray hsv_max_red = new ScalarArray(new MCvScalar(h_max_red, s_max_red, v_max_red));//    ScalarArray hsv_min_green = new ScalarArray(new MCvScalar(h_min_green, s_min_green, v_min_green));//    ScalarArray hsv_max_green = new ScalarArray(new MCvScalar(h_max_green, s_max_green, v_max_green));               //    CvInvoke.CvtColor(frame, hsvimg, ColorConversion.Bgr2Hsv);//    CvInvoke.InRange(hsvimg, hsv_min_red, hsv_max_red, mask_red);//    CvInvoke.InRange(hsvimg, hsv_min_green, hsv_max_green, mask_green);//    CvInvoke.MedianBlur(mask_red, mask_red, 5);//    CvInvoke.MedianBlur(mask_green, mask_green, 5);//    Mat mask = new Mat();//    CvInvoke.Add(mask_red, mask_green, mask);  //掩膜相加//    CvInvoke.Imshow("mask", mask);          //显示合在一起的掩膜//    VectorOfVectorOfPoint contours_red = new VectorOfVectorOfPoint();//    VectorOfRect hierachy_red = new VectorOfRect();//    CvInvoke.FindContours(mask_red, contours_red, hierachy_red, RetrType.External, ChainApproxMethod.ChainApproxNone);//    for (int i = 0; i < contours_red.Size; i++)//    {//        Rectangle rect = CvInvoke.BoundingRectangle(contours_red[i]);//        if (rect.Width < 10 || rect.Height < 10)                //对于太小的外接矩形,删除掉//            continue;//        CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);//        CvInvoke.PutText(frame, "red", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));//    }//    VectorOfVectorOfPoint contours_green = new VectorOfVectorOfPoint();//    VectorOfRect hierachy_green = new VectorOfRect();//    CvInvoke.FindContours(mask_green, contours_green, hierachy_green, RetrType.External, ChainApproxMethod.ChainApproxNone);//    for (int i = 0; i < contours_green.Size; i++)//    {//        Rectangle rect = CvInvoke.BoundingRectangle(contours_green[i]);//        if (rect.Width < 10 || rect.Height < 10)                //对于太小的外接矩形,删除掉//            continue;//        CvInvoke.Rectangle(frame, rect, new MCvScalar(255, 0, 0), 1);//        CvInvoke.PutText(frame, "green", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 255, 0));//    }//    CvInvoke.Imshow("hsv_track", frame);//    if (CvInvoke.WaitKey(30) == 27)//    {//        break;//    }//}///手掌肤色提取Mat src = CvInvoke.Imread("2.bmp");double h_min = 0, s_min = 70, v_min = 70;       //手的HSV颜色分布double h_max = 15, s_max = 255, v_max = 255;ScalarArray hsv_min = new ScalarArray(new MCvScalar(h_min, s_min, v_min));ScalarArray hsv_max = new ScalarArray(new MCvScalar(h_max, s_max, v_max));Mat hsvimg = new Mat();Mat mask = new Mat();CvInvoke.CvtColor(src, hsvimg, ColorConversion.Bgr2Hsv);CvInvoke.InRange(hsvimg, hsv_min, hsv_max, mask);CvInvoke.MedianBlur(mask, mask, 5);VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();VectorOfRect hierarchy = new VectorOfRect();//发现轮廓CvInvoke.FindContours(mask, contours, hierarchy, RetrType.External, ChainApproxMethod.ChainApproxNone);for(int i = 0; i< contours.Size;i++){Rectangle rect = CvInvoke.BoundingRectangle(contours[i]);if (rect.Width < 10 || rect.Height < 10)continue;CvInvoke.Rectangle(src, rect, new MCvScalar(255, 0, 0));CvInvoke.PutText(src, "hand", new Point(rect.X, rect.Y - 5), FontFace.HersheyComplexSmall, 1.2, new MCvScalar(0, 0, 255));}CvInvoke.Imshow("hsv_track", src);CvInvoke.WaitKey(0);}}
}

效果

1、寻找图像红色部分:
在这里插入图片描述
掩膜:
在这里插入图片描述
2、寻找红色部分:
在这里插入图片描述
3、寻找视频中的绿色部分:

在这里插入图片描述
4、寻找视频中红色与绿色物体:
在这里插入图片描述
5、根据手的HSV特征寻找手:
在这里插入图片描述
在这里插入图片描述

这篇关于EmguCV实现颜色物体识别与追踪(CvInvoke.InRange()函数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/374416

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、