【原理】预训练模型之自然语言理解--RoBERTa

2023-11-09 03:50

本文主要是介绍【原理】预训练模型之自然语言理解--RoBERTa,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RoBERTa: A Robustly Optimized BERT Pretraining Approach

从模型结构上讲,相比BERT,RoBERTa基本没有什么创新,它更像是关于BERT在预训练方面进一步的探索。其改进了BERT很多的预训练策略,其结果显示,原始BERT可能训练不足,并没有充分地学习到训练数据中的语言知识。

图1展示了RoBERTa主要探索的几个方面,并这些方面进行融合,最终训练得到的模型就是RoBERTa。

图1 RoBERT的改进点

1. Dynamic Masking

BERT中有个**Masking Language Model(MLM)**预训练任务,在准备训练数据的时候,需要Mask掉一些token,训练过程中让模型去预测这些token,这里将数据Mask后,训练数据将不再变化,将使用这些数据一直训练直到结束,这种Mask方式被称为Static Masking。

如果在训练过程中,期望每轮的训练数据中,Mask的位置也相应地发生变化,这就是Dynamic MaskingRoBERTa使用的就是Dynamic Masking

在RoBERTa中,它具体是这么实现的,将原始的训练数据复制多份,然后进行Masking。这样相同的数据被随机Masking的位置也就发生了变化,相当于实现了Dynamic Masking的目的。例如原始数据共计复制了10份数据,共计需要训练40轮,则每种mask的方式在训练中会被使用4次。

2. Full-Sentences without NSP

BERT中在构造数据进行NSP任务的时候是这么做的,将两个segment进行拼接作为一串序列输入模型,然后使用NSP任务去预测这两个segment是否具有上下文的关系,但序列整体的长度小于512。

然而,RoBERTa通过实验发现,去掉NSP任务将会提升down-stream任务的指标,如图2所示。

图2 NSP实验

其中,SEGMENT-PAIR、SENTENCE-PAIR、FULL-SENTENCES、DOC-SENTENCE分别表示不同的构造输入数据的方式,RoBERTa使用了FULL-SENTENCES,并且去掉了NSP任务。这里我们重点讨论一下FULL-SENTENCES输入方式,更多详情请参考RoBERTa。

FULL-SENTENCES表示从一篇文章或者多篇文章中连续抽取句子,填充到模型输入序列中。也就是说,一个输入序列有可能是跨越多个文章边界的。具体来讲,它会从一篇文章中连续地抽取句子填充输入序列,但是如果到了文章结尾,那么将会从下一个文章中继续抽取句子填充到该序列中,不同文章中的内容还是按照SEP分隔符进行分割。

3. Larger Batch Size

RoBERTa通过增加训练过程中Batch Size的大小,来观看模型的在预训练任务和down-stream任务上的表现。发现增加Batch Size有利于降低保留的训练数据的Perplexity,提高down-stream的指标。

图3 batch size 实验

4. Byte-Level BPE

Byte-Pair Encodeing(BPE)是一种表示单词,生成词表的方式。BERT中的BPE算法是基于字符的BPE算法,由它构造的"单词"往往位于字符和单词之间,常见的形式就是单词中的片段作为一个独立的"单词",特别是对于那些比较长的单词。比如单词woderful有可能会被拆分成两个子单词"wonder"和"ful"。

不同于BERT,RoBERTa使用了基于Byte的BPE,词表中共计包含50K左右的单词,这种方式的不需要担心未登录词的出现,因为它会从Byte的层面去分解单词。

5. More Data and More Training Steps

相比BERT, RoBERTa使用了更多的训练数据,详情如图4所示。

图4 RoBERTa预训练数据集

图5展示了RoBERTa随着训练数据增加和训练步数增加的实验效果,显然随着两者的增加,模型在down-stream的表现也不断提升。

图5 增加数据和训练步数实验效果图

6. 相关资料

  1. RoBERTa: A Robustly Optimized BERT Pretraining Approach
  2. RoBERTa Github

如果同学们对本课程感兴趣,想了解更多课程相关信息,或者查阅更多课程资料,请移步我们的官方github: awesome-DeepLearning,也欢迎各位同学点击Star,有大家的支持我们才会走得更远,提供更多优质资源以供学习。同时更多深度学习资料请参阅飞桨深度学习平台。



最后,也欢迎同学们加入我们的官方交流群。


这篇关于【原理】预训练模型之自然语言理解--RoBERTa的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373854

相关文章

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll