pandas教程:Introduction to pandas Data Structures pandas的数据结构

2023-11-08 20:15

本文主要是介绍pandas教程:Introduction to pandas Data Structures pandas的数据结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Chapter 5 Getting Started with pandas
  • 5.1 Introduction to pandas Data Structures
  • 1 Series
  • 2 DataFrame
  • 3 Index Objects (索引对象)

Chapter 5 Getting Started with pandas

这样导入pandas

import pandas as pd
e:\python3.7\lib\site-packages\numpy\_distributor_init.py:32: UserWarning: loaded more than 1 DLL from .libs:
e:\python3.7\lib\site-packages\numpy\.libs\libopenblas.TXA6YQSD3GCQQC22GEQ54J2UDCXDXHWN.gfortran-win_amd64.dll
e:\python3.7\lib\site-packages\numpy\.libs\libopenblas.XWYDX2IKJW2NMTWSFYNGFUWKQU3LYTCZ.gfortran-win_amd64.dllstacklevel=1)

另外可以导入SeriesDataFrame,因为这两个经常被用到:

from pandas import Series, DataFrame

5.1 Introduction to pandas Data Structures

数据结构其实就是SeriesDataFrame

1 Series

这里series我就不翻译成序列了,因为之前的所有笔记里,我都是把sequence翻译成序列的。

series是一个像数组一样的一维序列,并伴有一个数组表示label,叫做index。创建一个series的方法也很简单:

obj = pd.Series([4, 7, -5, 3])
obj
0    4
1    7
2   -5
3    3
dtype: int64

可以看到,左边表示index,右边表示对应的value。可以通过valueindex属性查看:

obj.values
array([ 4,  7, -5,  3], dtype=int64)
obj.index # like range(4)
RangeIndex(start=0, stop=4, step=1)

当然我们也可以自己指定indexlabel

obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
obj2
d    4
b    7
a   -5
c    3
dtype: int64
obj2.index
Index(['d', 'b', 'a', 'c'], dtype='object')

可以用indexlabel来选择:

obj2['a']
-5
obj2['d'] = 6
obj2[['c', 'a', 'd']]
c    3
a   -5
d    6
dtype: int64

这里[‘c’, ‘a’, ‘d’]其实被当做了索引,尽管这个索引是用string构成的。

使用numpy函数或类似的操作,会保留index-value的关系:

obj2[obj2 > 0]
d    6
b    7
c    3
dtype: int64
obj2 * 2
d    12
b    14
a   -10
c     6
dtype: int64
import numpy as np
np.exp(obj2)
d     403.428793
b    1096.633158
a       0.006738
c      20.085537
dtype: float64

另一种看待series的方法,它是一个长度固定,有顺序的dict,从index映射到value。在很多场景下,可以当做dict来用:

'b' in obj2
True
'e' in obj2
False

还可以直接用现有的dict来创建series

sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon':16000, 'Utah': 5000}
obj3 = pd.Series(sdata)
obj3
Ohio      35000
Texas     71000
Oregon    16000
Utah       5000
dtype: int64

series中的index其实就是dict中排好序的keys。我们也可以传入一个自己想要的顺序:

states = ['California', 'Ohio', 'Oregon', 'Texas']
obj4 = pd.Series(sdata, index=states)
obj4
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
dtype: float64

顺序是按states里来的,但因为没有找到california,所以是NaNNaN表示缺失数据,用之后我们提到的话就用missingNA来指代。pandas中的isnullnotnull函数可以用来检测缺失数据:

pd.isnull(obj4)
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool
pd.notnull(obj4)
California    False
Ohio           True
Oregon         True
Texas          True
dtype: bool

series也有对应的方法:

obj4.isnull()
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

关于缺失数据,在第七章还会讲得更详细一些。

series中一个有用的特色自动按index label来排序(Data alignment features):

obj3
Ohio      35000
Texas     71000
Oregon    16000
Utah       5000
dtype: int64
obj4
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
dtype: float64
obj3 + obj4
California         NaN
Ohio           70000.0
Oregon         32000.0
Texas         142000.0
Utah               NaN
dtype: float64

这个Data alignment features(数据对齐特色)和数据库中的join相似。

series自身和它的index都有一个叫name的属性,这个能和其他pandas的函数进行整合:

obj4.name = 'population'
obj4.index.name = 'state'
obj4
state
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
Name: population, dtype: float64

seriesindex能被直接更改:

obj
0    4
1    7
2   -5
3    3
dtype: int64
obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
obj
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64

2 DataFrame

DataFrame表示一个长方形表格,并包含排好序的列,每一列都可以是不同的数值类型(数字,字符串,布尔值)。DataFrame有行索引和列索引(row index, column index);可以看做是分享所有索引的由series组成的字典。数据是保存在一维以上的区块里的。

(其实我是把dataframe当做excel里的那种表格来用的,这样感觉更直观一些)

构建一个dataframe的方法,用一个dcitdict里的值是list

data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002, 2003], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}frame = pd.DataFrame(data)frame
popstateyear
01.5Ohio2000
11.7Ohio2001
23.6Ohio2002
32.4Nevada2001
42.9Nevada2002
53.2Nevada2003

dataframe也会像series一样,自动给数据赋index, 而列则会按顺序排好。

对于一个较大的DataFrame,用head方法会返回前5行(注:这个函数在数据分析中经常使用,用来查看表格里有什么东西):

frame.head()
popstateyear
01.5Ohio2000
11.7Ohio2001
23.6Ohio2002
32.4Nevada2001
42.9Nevada2002

如果指定一列的话,会自动按列排序:

pd.DataFrame(data, columns=['year', 'state', 'pop'])
yearstatepop
02000Ohio1.5
12001Ohio1.7
22002Ohio3.6
32001Nevada2.4
42002Nevada2.9
52003Nevada3.2

如果你导入一个不存在的列名,那么会显示为缺失数据:

frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'], index=['one', 'two', 'three', 'four', 'five', 'six'])
frame2
yearstatepopdebt
one2000Ohio1.5NaN
two2001Ohio1.7NaN
three2002Ohio3.6NaN
four2001Nevada2.4NaN
five2002Nevada2.9NaN
six2003Nevada3.2NaN
frame2.columns
Index(['year', 'state', 'pop', 'debt'], dtype='object')

DataFrame里提取一列的话会返回series格式,可以以属性或是dict一样的形式来提取:

frame2['state']
one        Ohio
two        Ohio
three      Ohio
four     Nevada
five     Nevada
six      Nevada
Name: state, dtype: object
frame2.year
one      2000
two      2001
three    2002
four     2001
five     2002
six      2003
Name: year, dtype: int64

注意:frame2[column]能应对任何列名,但frame2.column的情况下,列名必须是有效的python变量名才行。

返回的seriesDataFrame种同样的index,而且name属性也是对应的。

对于行,要用在loc属性里用 位置或名字:

frame2.loc['three']
year     2002
state    Ohio
pop       3.6
debt      NaN
Name: three, dtype: object

列值也能通过赋值改变。比如给debt赋值:

frame2['debt'] = 16.5
frame2
yearstatepopdebt
one2000Ohio1.516.5
two2001Ohio1.716.5
three2002Ohio3.616.5
four2001Nevada2.416.5
five2002Nevada2.916.5
six2003Nevada3.216.5
frame2['debt'] = np.arange(6.)
frame2
yearstatepopdebt
one2000Ohio1.50.0
two2001Ohio1.71.0
three2002Ohio3.62.0
four2001Nevada2.43.0
five2002Nevada2.94.0
six2003Nevada3.25.0

如果把listarray赋给column的话,长度必须符合DataFrame的长度。如果把一二series赋给DataFrame,会按DataFrameindex来赋值,不够的地方用缺失数据来表示:

val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
frame2['debt'] = val
frame2
yearstatepopdebt
one2000Ohio1.5NaN
two2001Ohio1.7-1.2
three2002Ohio3.6NaN
four2001Nevada2.4-1.5
five2002Nevada2.9-1.7
six2003Nevada3.2NaN

如果列不存在,赋值会创建一个新列。而del也能像删除字典关键字一样,删除列:

frame2['eastern'] = frame2.state == 'Ohio'
frame2
yearstatepopdebteastern
one2000Ohio1.5NaNTrue
two2001Ohio1.7-1.2True
three2002Ohio3.6NaNTrue
four2001Nevada2.4-1.5False
five2002Nevada2.9-1.7False
six2003Nevada3.2NaNFalse

然后用del删除这一列:

del frame2['eastern']
frame2.columns
Index(['year', 'state', 'pop', 'debt'], dtype='object')

注意:columns返回的是一个view,而不是新建了一个copy。因此,任何对series的改变,会反映在DataFrame上。除非我们用copy方法来新建一个。

另一种常见的格式是dict中的dict

pop = {'Nevada': {2001: 2.4, 2002: 2.9},'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}

把上面这种嵌套dict传给DataFrame,pandas会把外层dictkey当做列,内层key当做行索引:

frame3 = pd.DataFrame(pop)
frame3
NevadaOhio
2000NaN1.5
20012.41.7
20022.93.6

另外DataFrame也可以向numpy数组一样做转置:

frame3.T
200020012002
NevadaNaN2.42.9
Ohio1.51.73.6

指定index

pd.DataFrame(pop, index=[2001, 2002, 2003])
NevadaOhio
20012.41.7
20022.93.6
2003NaNNaN

series组成的dict

pdata = {'Ohio': frame3['Ohio'][:-1],'Nevada': frame3['Nevada'][:2]}
pd.DataFrame(pdata)
NevadaOhio
2000NaN1.5
20012.41.7

如果DataFrameindexcolumn有自己的name属性,也会被显示:

frame3.index.name = 'year'; frame3.columns.name = 'state'
frame3
stateNevadaOhio
year
2000NaN1.5
20012.41.7
20022.93.6

values属性会返回二维数组:

frame3.values
array([[ nan,  1.5],[ 2.4,  1.7],[ 2.9,  3.6]])

如果column有不同的类型,dtype会适应所有的列:

frame2.values
array([[2000, 'Ohio', 1.5, nan],[2001, 'Ohio', 1.7, -1.2],[2002, 'Ohio', 3.6, nan],[2001, 'Nevada', 2.4, -1.5],[2002, 'Nevada', 2.9, -1.7],[2003, 'Nevada', 3.2, nan]], dtype=object)

3 Index Objects (索引对象)

pandasIndex Objects (索引对象)负责保存axis labels和其他一些数据(比如axis namenames)。一个数组或其他一个序列标签,只要被用来做构建seriesDataFrame,就会被自动转变为index

obj = pd.Series(range(3), index=['a', 'b', 'c'])
index = obj.index
index
Index(['a', 'b', 'c'], dtype='object')
index[1:]
Index(['b', 'c'], dtype='object')

index object是不可更改的:

index[1] = 'd'
---------------------------------------------------------------------------TypeError                                 Traceback (most recent call last)<ipython-input-67-676fdeb26a68> in <module>()
----> 1 index[1] = 'd'/Users/xu/anaconda/envs/py35/lib/python3.5/site-packages/pandas/indexes/base.py in __setitem__(self, key, value)1243 1244     def __setitem__(self, key, value):
-> 1245         raise TypeError("Index does not support mutable operations")1246 1247     def __getitem__(self, key):TypeError: Index does not support mutable operations

正因为不可修改,所以data structure中分享index object是很安全的:

labels = pd.Index(np.arange(3))
labels
Int64Index([0, 1, 2], dtype='int64')
obj2 = pd.Series([1.5, -2.5, 0], index=labels)
obj2
0    1.5
1   -2.5
2    0.0
dtype: float64
obj2.index is labels
True

index除了想数组,还能像大小一定的set

frame3
stateNevadaOhio
year
2000NaN1.5
20012.41.7
20022.93.6
frame3.columns
Index(['Nevada', 'Ohio'], dtype='object', name='state')
'Ohio' in frame3.columns
True
2003 in frame3.columns
False

python里的set不同,pandasindex可以有重复的labels

dup_labels = pd.Index(['foo', 'foo', 'bar', 'bar'])
dup_labels
Index(['foo', 'foo', 'bar', 'bar'], dtype='object')

在这种重复的标签中选择的话,会选中所有相同的标签。

这篇关于pandas教程:Introduction to pandas Data Structures pandas的数据结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/372247

相关文章

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基