如何将多模态数据融入到BERT架构中-多模态BERT的两类预训练任务

2023-11-08 15:20

本文主要是介绍如何将多模态数据融入到BERT架构中-多模态BERT的两类预训练任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是DASOU;

回到2018年BERT刚刚横空出世,如果想快速搞一篇BERT的多模态预训练论文,应该从哪些方面去考虑呢?

本文讲两个问题,把多模态BERT知识点串起来【绝对原创,至少我还没看到这么讲过的博文】:

  1. 如何将MLM和多模态数据融合
  2. 如何将NSP任务和多模态数据融合

BERT中的大部分模块都是已经有的,它最大的作用就是证明了可以通过文本重建的方式从大量的无监督语料中获取到知识;

那么我们现在思考的问题就是如何从多模态数据中,使用BERT的架构,学习到有用的知识;

BERT有两个任务,一个是MLM。一个是NSP;

MLM是做文本重建,NSP是做句间关系;

1. 如何将MLM和多模态数据融合

MLM我们需要从三个方面去考虑:

  1. MLM输入形式是什么?
  2. mask的时候需要注意什么?
  3. 输出形式是什么,损失函数是什么?

在多模态场景下,对MLM任务,需要分为两个方向,一个是对文本的重建,称之为Masked Language Modeling (MLM),一个是对图像的重建,称之为Masked Region Modeling(MRM);

文本这边的MLM很简单,和BERT原始本身没区别,就不赘述了;

有意思的是图像重建:MRM;

首先拿到一张图片,要想把这个图片送入到TRM中去,需要的是多个图片tokens;

有几种方式可以做到这一点,首先第一个就是将图片分为一个个的patch,这个老生常谈了,TRM在CV中的应用大部分都是这种方式;

还有一种就是使用Faster-RCNN对图片做目标检测,获取到一个个的含有物体的regions,那么这个regions就是可以认为是一个个的tokens;

这个时候会出现一个问题,我们思考BERT中的文本tokens的输入,不仅仅是embeddings,而且还有position embeddings;

这是因为TRM中tokens之间是无序的,需要使用position embeddings来标明顺序;

那么回到图像这里,用什么来标明顺序呢?一般来说使用的是Faster-RCNN中输出的regions的locations信息【5维或者是7维度】;

仿照文本,我们需要把图片regions的表征和地理位置的表征加起来,由于维度不一致,所以加起来之前需要各自过一个全链接层;

那么【mask】怎么去操作呢,在操作的时候需要注意什么呢?

文本这边还是直接使用【mask】符号去mask掉子词就可以;

那么在图片这边,直接使用全零向量替代掉mask掉的图片regions就可以了;

这里有一个细节很有意思,在mask的时候我们有两种选择,就是文本和图片是混合mask的或者文本和图片是conditional masking;

文本和图片是混合的,就是说明我们在mask的时候不区分图片或者文本,随机mask;

文本和图片是conditional mask,就是说我在mask文本的时候,保持图片是完整的,在mask图片的时候,保持文本是完整的;

这两方式哪种好呢?

我们这么来想:

假如你的句子中存在【苹果】这个单词,而且图片中有【苹果】这个region,那么在mask的时候,会不会存在在mask掉【苹果】这个词汇的时候,同时mask掉了【苹果】这个区域图像呢?

肯定有概率存在这种情况。

所以conditional mask一般来说会更好一点。

我们在来说MLM的第三个问题,输出形式是什么或者说损失函数是什么?

文本这边就是softmax之后找是哪一个单词,从而进行更新梯度;

图片这边会更复杂一点,一般来说分为三种形式,这主要是对于一个图片我们可以使用三种方式描述它;

首先第一种就是使用Faster-RCNN的ROI pooled feature去描述这个图片区域,那么我们就可以使用mask的图片区域的TRM输出的向量接一个全连接打到相同维度,和ROI pooled feature进行一个L2

第二个就是,比如说我现在有图片中物体类别有50个类别,那么当前图片区域的输出就可以是一个50个类别软标签(做了softmax的归一化到概率),这样可以和TRM的输出做KL散度;

第三个是承接第二个,我们可以使用概率最大的那个作为当前区域的类别,也就是得到了一个one-hot,也就是要给硬标签,这个直接做交叉熵就可以

2. 多模态数据如何做NSP任务呢?

其实很简单,NSP任务本质上是做句子间的关系,那么我们只需要类比的做一个图片和文本之间是否匹配的任务就可以了,也就是ITM任务;

ITM本质上是从文本整体和图片整体来做关系,还有的会从字和单个图片区域做关系学习,比如Word-Region Alignment (WRA) ;

多模态这块有点乱,但是大体上就是按照MLM和NSP任务扩展到多模态数据上,这么理解会更容易一些;

这篇关于如何将多模态数据融入到BERT架构中-多模态BERT的两类预训练任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/370726

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核