深入MTK平台bootloader启动之【 Pre-loader - Lk】分析笔记

2023-11-08 13:32

本文主要是介绍深入MTK平台bootloader启动之【 Pre-loader - Lk】分析笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、bootloader到kernel启动总逻辑流程图

ARM架构中,EL0/EL1是必须实现,EL2/EL3是选配,ELx跟层级对应关系:

EL0 -- app

EL1 -- Linux kernel 、lk

EL2 -- hypervisor(虚拟化)

EL3 -- ARM trust firmware 、pre-loader

若平台未实现EL3(atf),pre-loader直接加载lk:


image

若平台实现EL3,则需要先加载完ATF再由ATF去加载lk:


bootloader 启动分两个阶段,一个是pre-loader加载lk(u-boot)阶段,另一个是lk加载kernel阶段。下面跟着流程图简述第一个阶段的加载流程。

1-3:设备上电起来后,跳转到Boot ROM(不是flash)中的boot code中执行把pre-loader加载起到ISRAM, 因为当前DRAM(RAM分SRAM跟DRAM,简单来说SRAM就是cache,DRAM就是普通内存)还没有准备好,所以要先把pre-loader load到芯片内部的ISRAM(Internal SRAM)中。

4-6:pre-loader初始化好DRAM后就将lk从flash(nand/emmc)中加载到DRAM中运行;

7-8:解压bootimage成ramdisk跟kernel并载入DRAM中,初始化dtb;

9-11:lk跳转到kernl初始化, kernel初始化完成后fork出init进程, 然后拉起ramdisk中的init程序,进入用户空间初始化,init进程fork出zygote进程..直到整个Android启动完成.


2、从pre-loader到lk(mt6580为例)

Pre-loader主要干的事情就是初始化某些硬件,比如: UART,GPIO,DRAM,TIMER,RTC,PMIC 等等,建立起最基本的运行环境,最重要的就是初始化DRAM.

时序图:

点击查看大图

源码流程如下:

./bootloader/preloader/platform/mt6580/src/init/init.s

.section .text.start
....globl _start
.../* set the cpu to SVC32 mode */MRS	r0,cpsr
    BIC	r0,r0,#0x1fORR	r0,r0,#0xd3MSR	cpsr,r0
/* disable interrupt */MRS r0, cpsr
    MOV r1, #INT_BITORR r0, r0, r1MSR cpsr_cxsf, r0...
setup_stk :/* setup stack */LDR r0, stackLDR r1, stacksz
...entry :LDR r0, =bldr_args_addr/* 跳转到C代码 main 入口 */B   main

init.s 主要干的事情是切换系统到管理模式(svc)(如果平台有实现el3,那么pre-loader运行在el3,否则运行在el1),禁止irq/fiq,设置stack等, 然后jump到c代码main函数入口。 

进入源码分析。

./bootloader/preloader/platform/mt6580/src/core/main.cvoid main(u32 *arg)
{struct bldr_command_handler handler;u32 jump_addr, jump_arg;/* get the bldr argument */bldr_param = (bl_param_t *)*arg;// 初始化uart mtk_uart_init(UART_SRC_CLK_FRQ, CFG_LOG_BAUDRATE);// 这里干了很多事情,包括各种的平台硬件(timer,pmic,gpio,wdt...)初始化工作.bldr_pre_process();handler.priv = NULL;handler.attr = 0;handler.cb   = bldr_cmd_handler;// 这里是获取启动模式等信息保存到全局变量g_boot_mode和g_meta_com_type 中.BOOTING_TIME_PROFILING_LOG("before bldr_handshake");bldr_handshake(&handler);BOOTING_TIME_PROFILING_LOG("bldr_handshake");// 下面跟 secro img 相关,跟平台设计强相关./* security check */sec_lib_read_secro();sec_boot_check();device_APC_dom_setup();BOOTING_TIME_PROFILING_LOG("sec_boot_check");/* 如果已经实现EL3,那么进行tz预初始化 */
#if CFG_ATF_SUPPORTtrustzone_pre_init();
#endif/* bldr_load_images
此函数要做的事情就是把lk从ROM中指定位置load到DRAM中,开机log中可以看到具体信息:
[PART] load "lk" from 0x0000000001CC0200 (dev) to 0x81E00000 (mem) [SUCCESS]
这里准备好了jump到DRAM的具体地址,下面详细分析.
*/if (0 != bldr_load_images(&jump_addr)) {print("%s Second Bootloader Load Failed\n", MOD);goto error;}/* 
该函数的实现体是platform_post_init,这里要干的事情其实比较简单,就是通过
hw_check_battery去判断当前系统是否存在电池(判断是否有电池ntc脚来区分),
如果不存在就陷入while(1)卡住了,所以在es阶段调试有时候
需要接电源调试的,就需要改这里面的逻辑才可正常开机 
*/bldr_post_process();// atf 正式初始化,使用特有的系统调用方式实现.
#if CFG_ATF_SUPPORTtrustzone_post_init();
#endif/* 跳转传入lk的参数,包括boot time/mode/reason 等,这些参数在platform_set_boot_args 函数获取。
*/jump_arg = (u32)&(g_dram_buf->boottag);/* 执行jump系统调用,从 pre-loader 跳转到 lk执行,
如果实现了EL3情况就要复杂一些,需要先跳转到EL3初始化,然后再跳回lk,pre-loader执行在EL3,LK执行在EL1)
从log可以类似看到这些信息:[BLDR] jump to 0x81E00000[BLDR] <0x81E00000>=0xEA000007[BLDR] <0x81E00004>=0xEA0056E2 */#if CFG_ATF_SUPPORT/* 64S3,32S1,32S1 (MTK_ATF_BOOT_OPTION = 0)* re-loader jump to LK directly and then LK jump to kernel directly */if ( BOOT_OPT_64S3 == g_smc_boot_opt &&BOOT_OPT_32S1 == g_lk_boot_opt &&BOOT_OPT_32S1 == g_kernel_boot_opt) {print("%s 64S3,32S1,32S1, jump to LK\n", MOD);bldr_jump(jump_addr, jump_arg, sizeof(boot_arg_t));} else {// 如果 el3 使用aarch64实现,则jump到atf.print("%s Others, jump to ATF\n", MOD);bldr_jump64(jump_addr, jump_arg, sizeof(boot_arg_t));} #elsebldr_jump(jump_addr, jump_arg, sizeof(boot_arg_t)); #endif// 如果没有取到jump_addr,则打印错误提示,进入while(1)等待. error:platform_error_handler(); }

main 函数小结:

1、各种硬件初始化(uart、pmic、wdt、timer、mem..);

2、获取系统启动模式等,保存在全局变量中;

3、Security check,跟secro.img相关;

4、如果系统已经实现el3,则进入tz初始化;

5、获取lk加载到DRAM的地址(固定值),然后从ROM中找到lk分区的地址, 如果没找到jump_addr,则 goto error;

6、battery check,如果没有电池就会陷入while(1);

7、jump到lk(如果有实现el3,则会先jump到el3,然后再回到lk)


3、重点函数分析

bldr_load_images

函数主要干的事情就是找到lk分区地址和lk加载到DRAM中的地址, 准备好jump到lk执行,如下源码分析:

static int bldr_load_images(u32 *jump_addr)
{int ret = 0;blkdev_t *bootdev;u32 addr = 0;char *name;u32 size = 0;u32 spare0 = 0;u32 spare1 = 0;...
/* 这个地址是一个固定值,可以查到定义在:./bootloader/preloader/platform/mt6580/default.mak:95:CFG_UBOOT_MEMADDR := 0x81E00000从log中可以看到:[BLDR] jump to 0x81E00000
*/addr = CFG_UBOOT_MEMADDR;/* 然后去ROM找到lk所在分区地址 */ret = bldr_load_part("lk", bootdev, &addr, &size);if (ret)return ret;*jump_addr = addr;}// 这个函数逻辑很简单,就不需要多说了.
int bldr_load_part(char *name, blkdev_t *bdev, u32 *addr, u32 *size)
{part_t *part = part_get(name);if (NULL == part) {print("%s %s partition not found\n", MOD, name);return -1;}return part_load(bdev, part, addr, 0, size);
}// 真正的load实现是在part_load函数.
int part_load(blkdev_t *bdev, part_t *part, u32 *addr, u32 offset, u32 *size)
{int ret;img_hdr_t *hdr = (img_hdr_t *)img_hdr_buf;part_hdr_t *part_hdr = &hdr->part_hdr;gfh_file_info_t *file_info_hdr = &hdr->file_info_hdr;/* specify the read offset */u64 src = part->startblk * bdev->blksz + offset;u32 dsize = 0, maddr = 0;u32 ms;// 检索分区头是否正确。/* retrieve partition header. */if (blkdev_read(bdev, src, sizeof(img_hdr_t), (u8*)hdr,0) != 0) {print("[%s]bdev(%d) read error (%s)\n", MOD, bdev->type, part->name);return -1;}if (part_hdr->info.magic == PART_MAGIC) {/* load image with partition header */part_hdr->info.name[31] = '\0';/*输出分区的各种信息,从log中可以看到:[PART] Image with part header[PART] name : lk[PART] addr : FFFFFFFFh mode : -1[PART] size : 337116[PART] magic: 58881688h*/print("[%s]Img with part header\n", MOD);print("[%s]name:%s\n", MOD, part_hdr->info.name);print("[%s]addr:%xh\n", MOD, part_hdr->info.maddr);print("[%s]size:%d\n", MOD, part_hdr->info.dsize);print("[%s]magic:%xh\n", MOD, part_hdr->info.magic);maddr = part_hdr->info.maddr;dsize = part_hdr->info.dsize;src += sizeof(part_hdr_t);memcpy(part_info + part_num, part_hdr, sizeof(part_hdr_t));part_num++;} else {print("[%s]%s img not exist\n", MOD, part->name);return -1;}// 如果maddr没有定义,那么就使用前面传入的地址addr.if (maddr == PART_HEADER_MEMADDR/*0xffffffff*/)maddr = *addr;if_overlap_with_dram_buffer((u32)maddr, ((u32)maddr + dsize));ms = get_timer(0);if (0 == (ret = blkdev_read(bdev, src, dsize, (u8*)maddr,0)))*addr = maddr;ms = get_timer(ms);/* 如果一切顺利就会打印出关键信息:[PART] load "lk" from 0x0000000001CC0200 (dev) to 0x81E00000 (mem) [SUCCESS][PART] load speed: 25324KB/s, 337116 bytes, 13ms
*/print("\n[%s]load \"%s\" from 0x%llx(dev) to 0x%x (mem) [%s]\n", MOD,part->name, src, maddr, (ret == 0) ? "SUCCESS" : "FAILED");if( ms == 0 )ms+=1;print("[%s]load speed:%dKB/s,%d bytes,%dms\n", MOD, ((dsize / ms) * 1000) / 1024, dsize, ms);return ret;
}

bldr_post_process

函数主要干的事情就是从pmic去检查是否有电池存在,如果没有就等待, 如下源码分析,比较简单:

// 就是包了一层而已.
static void bldr_post_process(void)
{platform_post_init();
}// 重点是这个函数:
void platform_post_init(void)
{/* normal boot to check battery exists or not */if (g_boot_mode == NORMAL_BOOT && !hw_check_battery() && usb_accessory_in()) {
...pl_charging(1);do {mdelay(300);/* 检查电池是否存在, 如果使用电源调试则需要修改此函数逻辑 */if (hw_check_battery())break;/* 喂狗,以免超时被狗咬 */platform_wdt_all_kick();} while(1);/* disable force charging mode */pl_charging(0);}...
}
Pre-loader 到 Lk的源码分析到这就完成了.

这篇关于深入MTK平台bootloader启动之【 Pre-loader - Lk】分析笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/370195

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

SpringBoot项目启动后自动加载系统配置的多种实现方式

《SpringBoot项目启动后自动加载系统配置的多种实现方式》:本文主要介绍SpringBoot项目启动后自动加载系统配置的多种实现方式,并通过代码示例讲解的非常详细,对大家的学习或工作有一定的... 目录1. 使用 CommandLineRunner实现方式:2. 使用 ApplicationRunne

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结