本文主要是介绍代码随想录算法训练营第四十五天丨 动态规划part08,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
139.单词拆分
思路
背包问题
单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。
拆分时可以重复使用字典中的单词,说明就是一个完全背包!
动规五部曲分析如下:
- 确定dp数组以及下标的含义
dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。
- 确定递推公式
如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。
所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。
- dp数组如何初始化
从递推公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递推的根基,dp[0]一定要为true,否则递推下去后面都都是false了。
那么dp[0]有没有意义呢?
dp[0]表示如果字符串为空的话,说明出现在字典里。
但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。
下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。
- 确定遍历顺序
题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。
还要讨论两层for循环的前后顺序。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
卡哥在这里做一个总结:
求组合数:动态规划:518.零钱兑换II (opens new window)求排列数:动态规划:377. 组合总和 Ⅳ (opens new window)、动态规划:70. 爬楼梯进阶版(完全背包) (opens new window)求最小数:动态规划:322. 零钱兑换 (opens new window)、动态规划:279.完全平方数(opens new window)
而本题其实我们求的是排列数,为什么呢。 拿 s = "applepenapple", wordDict = ["apple", "pen"] 举例。
"apple", "pen" 是物品,那么我们要求 物品的组合一定是 "apple" + "pen" + "apple" 才能组成 "applepenapple"。
"apple" + "apple" + "pen" 或者 "pen" + "apple" + "apple" 是不可以的,那么我们就是强调物品之间顺序。
所以说,本题一定是 先遍历 背包,再遍历物品。
- 举例推导dp[i]
以输入: s = "leetcode", wordDict = ["leet", "code"]为例,dp状态如图:
dp[s.size()]就是最终结果。
动规五部曲分析完毕,代码如下:
class Solution {public boolean wordBreak(String s, List<String> wordDict) {//dp[i] 表示是否能组成长度为i的字符串,结果为dp[i]boolean[] dp = new boolean[s.length()+1];//确定递推公式 if(dp[j]==true && wordDoct.contians(s.subStr(j,i-j)){dp[j]=ture;}//dp初始化dp[0] = true;//求的是排列数,所以先遍历背包再遍历物品for (int i = 1; i < dp.length; i++) {// 遍历背包for (int j = 0; j < i; j++) {// 遍历物品if (dp[j]==true && wordDict.contains(s.substring(j,i))){dp[i] = true;}}}return dp[s.length()];}
}
动态规划:关于多重背包,你该了解这些!
总结
多重背包在面试中基本不会出现,力扣上也没有对应的题目,大家对多重背包的掌握程度知道它是一种01背包,并能在01背包的基础上写出对应代码就可以了。
听说背包问题很难? 这篇总结篇来拯救你了
这篇关于代码随想录算法训练营第四十五天丨 动态规划part08的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!