Python地学分析 — GDAL对遥感影像重采样

2023-11-08 06:00

本文主要是介绍Python地学分析 — GDAL对遥感影像重采样,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注博主的微信公众号:“智能遥感”。

该公众号将为您奉上Python地学分析、爬虫、数据分析、Web开发、机器学习、深度学习等热门源代码。

本人的GitHub代码资料主页(持续更新中,多给Star,多Fork):

https://github.com/xbr2017

CSDN也在同步更新:

https://blog.csdn.net/XBR_2014

 对遥感影像重采样是遥感数据预处理常用的手段之一,本节重点讲解高、低分辨率图像重采样原理与方法。

思来想去,如果一味地给大家直接上代码,会显得有些枯燥无聊,可读性会有所降低。为了提高大家阅读的积极性,从本节开始,给大家展现一些高清遥感图像实例(封面图)。这样既可以学习到遥感科学在实际生活中的用途,还可以体会遥感之美。怎么突然觉得自己好有情怀???下面请先看封面简介:

图像来自LandSat官网

厄勒海峡大桥:1991年,丹麦和瑞典政府同意建立一座连接厄勒海峡两岸国家间的桥梁。瑞典马尔默(右)和丹麦哥本哈根(左)之间16公里长的厄勒海峡干线于2000年建成并通车。随着冰河时代末期海平面上升,切断了两者之间的陆地连接,丹麦和瑞典7000年后再次建立起两国的联系。

厄勒海峡链接有三个主要部分。在丹麦方面,链接从一条3,510米的水下隧道开始。隧道从水下延伸到一个长4055米的人工岛Peberholm上的一条道路上,该岛在图像中的天然岛屿南部呈现出明亮的白色形状。电缆支撑的厄勒海峡大桥横跨海峡东部向瑞典延伸7,845米,在整个图像上划出一条细长的白线(文字描述译自LandSat官网)。

遥感影像重采样

针对不同的遥感业务场景或者科研需求,对应的不同分辨率的遥感影像有着不同的用处。什么叫遥感影像的重采样呢?其定义是:根据各相邻的原采样点内插出新采样点的过程。内插的方法有双线性插值法、双三次卷积法和最邻近像元法等。重采样的定义是不是很专业?咳咳,好像有点抽象唉,没事没事,看看下面的示意图,你就能明白了。

上图过程表示从低分辨率图像往高分辨率图像进行重采样。在编写程序时,需要一个更大的数组来存储重采样后的新图像。左边图像将每个像元内插为对应的四个小像元,从6个大像元重采样成24个小像元。看到这里,相信大家就基本明白什么是重采样了吧。下面来看看具体的Python程序实战,其实重采样就这么简单。

# _*_ coding: utf-8 _*_
__author__ = 'xbr'
__date__ = '2018/10/23 15:09'import os
from osgeo import gdalos.chdir(r'D:\osgeopy-data\Landsat\Washington')in_ds = gdal.Open('p047r027_7t20000730_z10_nn10.tif')
in_band = in_ds.GetRasterBand(1)
out_rows = in_band.YSize * 2
out_columns = in_band.XSize * 2gtiff_driver = gdal.GetDriverByName('GTiff')
out_ds = gtiff_driver.Create('band1_resampled.tif',out_columns, out_rows)
out_ds.SetProjection(in_ds.GetProjection())
geotransform = list(in_ds.GetGeoTransform())
geotransform[1] /= 2
geotransform[5] /= 2
out_ds.SetGeoTransform(geotransform)data = in_band.ReadAsArray(buf_xsize=out_columns, buf_ysize=out_rows)
out_band = out_ds.GetRasterBand(1)
out_band.WriteArray(data)out_band.FlushCache()
out_band.ComputeStatistics(False)
out_ds.BuildOverviews('average', [2, 4, 8, 16, 32, 64])
del out_ds

这个例子有一些值得注意的重要事项。首先,在创建新数据集时,你将行数和列数加倍,并将这些相同的数字作为参数传递给ReadAsArray。这样就可以确保输入数据维度与输出数据维度相匹配,并且还可以将数据重新采样到较大的维度。你可以使用buf_obj参数的现有数组并获得相同的结果,而不是使用buf_xsize和buf_ysize参数。你还可以提供win_xsize和win_ysize参数,但默认为行和列的原始大小。

这说明在不改变地理转换大小的情况下,对比重新采样前后的结果。左上角的较小图像是正确的。较大的一个是通过使用输入图像中未编辑的地理转换创建的,与矢量图不匹配。

上面讲述了如何重低分辨率重采样成高分辨率,而重高分辨率重采样成低分辨率,则是实际遥感应用中比较多的情况。最近邻插值常用于将图像重采样到较小尺寸时,这种情况下,在输出中使用每四个像元块的右下像元值。

 

# _*_ coding: utf-8 _*_
# _*_ coding: utf-8 _*_
__author__ = 'xbr'
__date__ = '2018/10/23 15:50'import osimport numpy as np
from osgeo import gdalos.chdir(r'D:\osgeopy-data\Landsat\Washington')in_ds = gdal.Open('nat_color.tif')
out_rows = int(in_ds.RasterYSize / 2)
out_columns = int(in_ds.RasterXSize / 2)
num_bands = in_ds.RasterCountgtiff_driver = gdal.GetDriverByName('GTiff')
out_ds = gtiff_driver.Create('nat_color_resampled.tif',out_columns, out_rows, num_bands)out_ds.SetProjection(in_ds.GetProjection())
geotransform = list(in_ds.GetGeoTransform())
geotransform[1] *= 2
geotransform[5] *= 2
out_ds.SetGeoTransform(geotransform)data = in_ds.ReadRaster(buf_xsize=out_columns, buf_ysize=out_rows)
out_ds.WriteRaster(0, 0, out_columns, out_rows, data)
out_ds.FlushCache()
for i in range(num_bands):out_ds.GetRasterBand(i + 1).ComputeStatistics(False)out_ds.BuildOverviews('average', [2, 4, 8, 16])
del out_ds

该代码与第一个代码类似,不同之处在于输出行和列的数量减半而不是加倍,并且像元大小加倍而不是减半。请注意,在这种情况下,你要确保行数和列数是整数,因为除法的结果可能是浮点数,如果不是整型数据,程序很可能报错,可以自己尝试一下。

 

重采样前、后对比图,下图变得模糊,其实是分辨率变低了

这篇关于Python地学分析 — GDAL对遥感影像重采样的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/368217

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud