2.9-tf2-数据增强-tf_flowers

2023-11-07 19:51
文章标签 数据 tf 2.9 增强 flowers tf2

本文主要是介绍2.9-tf2-数据增强-tf_flowers,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1.导入包
    • 2.加载数据
    • 3.数据预处理
    • 4.数据增强
    • 5.预处理层的两种方法
    • 6.把与处理层用在数据集上
    • 7.训练模型
    • 8.自定义数据增强
    • 9.Using tf.image

tf_flowers数据集
在这里插入图片描述

1.导入包

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfdsfrom tensorflow.keras import layers
from tensorflow.keras.datasets import mnist

2.加载数据

(train_ds, val_ds, test_ds), metadata = tfds.load('tf_flowers',split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'],with_info=True,as_supervised=True,
)
#The flowers dataset has five classes.num_classes = metadata.features['label'].num_classes
print(num_classes)
5

复现数据:

#Let's retrieve an image from the dataset and use it to demonstrate data augmentation.get_label_name = metadata.features['label'].int2strimage, label = next(iter(train_ds))
_ = plt.imshow(image)
_ = plt.title(get_label_name(label))

在这里插入图片描述

3.数据预处理

Use Keras preprocessing layers

#Resizing and rescaling
#You can use preprocessing layers to resize your images to a consistent shape, and to rescale pixel values.IMG_SIZE = 180resize_and_rescale = tf.keras.Sequential([layers.experimental.preprocessing.Resizing(IMG_SIZE, IMG_SIZE),layers.experimental.preprocessing.Rescaling(1./255)
])
#Note: the rescaling layer above standardizes pixel values to [0,1]. If instead you wanted [-1,1], you would write Rescaling(1./127.5, offset=-1).
result = resize_and_rescale(image)
_ = plt.imshow(result)

在这里插入图片描述

#You can verify the pixels are in [0-1].print("Min and max pixel values:", result.numpy().min(), result.numpy().max())
Min and max pixel values: 0.0 1.0

4.数据增强

#Data augmentation
#You can use preprocessing layers for data augmentation as well.#Let's create a few preprocessing layers and apply them repeatedly to the same image.data_augmentation = tf.keras.Sequential([layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),layers.experimental.preprocessing.RandomRotation(0.2),
])
# Add the image to a batch
image = tf.expand_dims(image, 0)
plt.figure(figsize=(10, 10))
for i in range(9):augmented_image = data_augmentation(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0])plt.axis("off")

在这里插入图片描述

#There are a variety of preprocessing layers you can use for data augmentation including layers.RandomContrast, layers.RandomCrop, layers.RandomZoom, and others.

5.预处理层的两种方法

There are two ways you can use these preprocessing layers, with important tradeoffs.

  1. 第一种方法
Option 1: Make the preprocessing layers part of your model
model = tf.keras.Sequential([resize_and_rescale,data_augmentation,layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),# Rest of your model
])
There are two important points to be aware of in this case:Data augmentation will run on-device, synchronously with the rest of your layers, and benefit from GPU acceleration.When you export your model using model.save, the preprocessing layers will be saved along with the rest of your model. If you later deploy this model, it will automatically standardize images (according to the configuration of your layers). This can save you from the effort of having to reimplement that logic server-side.Note: Data augmentation is inactive at test time so input images will only be augmented during calls to model.fit (not model.evaluate or model.predict).
  1. 第二种方法:
#Option 2: Apply the preprocessing layers to your dataset
aug_ds = train_ds.map(lambda x, y: (resize_and_rescale(x, training=True), y))
With this approach, you use Dataset.map to create a dataset that yields batches of augmented images. In this case:Data augmentation will happen asynchronously on the CPU, and is non-blocking. You can overlap the training of your model on the GPU with data preprocessing, using Dataset.prefetch, shown below.
In this case the prepreprocessing layers will not be exported with the model when you call model.save. You will need to attach them to your model before saving it or reimplement them server-side. After training, you can attach the preprocessing layers before export.

6.把与处理层用在数据集上

Configure the train, validation, and test datasets with the preprocessing layers you created above. You will also configure the datasets for performance, using parallel reads and buffered prefetching to yield batches from disk without I/O become blocking. 
Note: data augmentation should only be applied to the training set.
batch_size = 32
AUTOTUNE = tf.data.experimental.AUTOTUNEdef prepare(ds, shuffle=False, augment=False):# Resize and rescale all datasetsds = ds.map(lambda x, y: (resize_and_rescale(x), y), num_parallel_calls=AUTOTUNE)if shuffle:ds = ds.shuffle(1000)# Batch all datasetsds = ds.batch(batch_size)# Use data augmentation only on the training setif augment:ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)# Use buffered prefecting on all datasetsreturn ds.prefetch(buffer_size=AUTOTUNE)
train_ds = prepare(train_ds, shuffle=True, augment=True)
val_ds = prepare(val_ds)
test_ds = prepare(test_ds)

7.训练模型

model = tf.keras.Sequential([layers.Conv2D(16, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(32, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Conv2D(64, 3, padding='same', activation='relu'),layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dense(num_classes)
])
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])
epochs=5
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/5
92/92 [==============================] - 30s 315ms/step - loss: 1.5078 - accuracy: 0.3428 - val_loss: 1.0809 - val_accuracy: 0.6240
Epoch 2/5
92/92 [==============================] - 28s 303ms/step - loss: 1.0781 - accuracy: 0.5724 - val_loss: 0.9762 - val_accuracy: 0.6322
Epoch 3/5
92/92 [==============================] - 28s 295ms/step - loss: 1.0083 - accuracy: 0.5900 - val_loss: 0.9570 - val_accuracy: 0.6376
Epoch 4/5
92/92 [==============================] - 28s 300ms/step - loss: 0.9537 - accuracy: 0.6116 - val_loss: 0.9081 - val_accuracy: 0.6485
Epoch 5/5
92/92 [==============================] - 28s 301ms/step - loss: 0.8816 - accuracy: 0.6525 - val_loss: 0.8353 - val_accuracy: 0.6594
loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)
12/12 [==============================] - 1s 83ms/step - loss: 0.8226 - accuracy: 0.6567
Accuracy 0.6566757559776306

8.自定义数据增强

First, you will create a layers.Lambda layer. This is a good way to write concise code. Next, you will write a new layer via subclassing, which gives you more control. Both layers will randomly invert the colors in an image, accoring to some probability.
def random_invert_img(x, p=0.5):if  tf.random.uniform([]) < p:x = (255-x)else:xreturn xdef random_invert(factor=0.5):return layers.Lambda(lambda x: random_invert_img(x, factor))random_invert = random_invert()plt.figure(figsize=(10, 10))
for i in range(9):augmented_image = random_invert(image)ax = plt.subplot(3, 3, i + 1)plt.imshow(augmented_image[0].numpy().astype("uint8"))plt.axis("off")

在这里插入图片描述

#Next, implement a custom layer by subclassing.class RandomInvert(layers.Layer):def __init__(self, factor=0.5, **kwargs):super().__init__(**kwargs)self.factor = factordef call(self, x):return random_invert_img(x)_ = plt.imshow(RandomInvert()(image)[0])

在这里插入图片描述

9.Using tf.image

Since the flowers dataset was previously configured with data augmentation, let's reimport it to start fresh.(train_ds, val_ds, test_ds), metadata = tfds.load('tf_flowers',split=['train[:80%]', 'train[80%:90%]', 'train[90%:]'],with_info=True,as_supervised=True,
)
#Retrieve an image to work with.image, label = next(iter(train_ds))
_ = plt.imshow(image)
_ = plt.title(get_label_name(label))

在这里插入图片描述

Let's use the following function to visualize and compare the original and augmented images side-by-side.def visualize(original, augmented):fig = plt.figure()plt.subplot(1,2,1)plt.title('Original image')plt.imshow(original)plt.subplot(1,2,2)plt.title('Augmented image')plt.imshow(augmented)
#Data augmentation
#Flipping the image
3Flip the image either vertically or horizontally.flipped = tf.image.flip_left_right(image)
visualize(image, flipped)

在这里插入图片描述

#Grayscale an image.grayscaled = tf.image.rgb_to_grayscale(image)
visualize(image, tf.squeeze(grayscaled))
_ = plt.colorbar()

在这里插入图片描述

#Saturate an image by providing a saturation factor.saturated = tf.image.adjust_saturation(image, 3)
visualize(image, saturated)

在这里插入图片描述

#Change image brightness
#Change the brightness of image by providing a brightness factor.bright = tf.image.adjust_brightness(image, 0.4)
visualize(image, bright)

在这里插入图片描述

#Center crop the image
#Crop the image from center up to the image part you desire.cropped = tf.image.central_crop(image, central_fraction=0.5)
visualize(image,cropped)

在这里插入图片描述

#Rotate the image
#Rotate an image by 90 degrees.rotated = tf.image.rot90(image)
visualize(image, rotated)

在这里插入图片描述

#Apply augmentation to a dataset
#As before, apply data augmentation to a dataset using Dataset.map.def resize_and_rescale(image, label):image = tf.cast(image, tf.float32)image = tf.image.resize(image, [IMG_SIZE, IMG_SIZE])image = (image / 255.0)return image, labeldef augment(image,label):image, label = resize_and_rescale(image, label)# Add 6 pixels of paddingimage = tf.image.resize_with_crop_or_pad(image, IMG_SIZE + 6, IMG_SIZE + 6) # Random crop back to the original sizeimage = tf.image.random_crop(image, size=[IMG_SIZE, IMG_SIZE, 3])image = tf.image.random_brightness(image, max_delta=0.5) # Random brightnessimage = tf.clip_by_value(image, 0, 1)return image, label
#Configure the datasets
train_ds = (train_ds.shuffle(1000).map(augment, num_parallel_calls=AUTOTUNE).batch(batch_size).prefetch(AUTOTUNE)
) val_ds = (val_ds.map(resize_and_rescale, num_parallel_calls=AUTOTUNE).batch(batch_size).prefetch(AUTOTUNE)
)test_ds = (test_ds.map(resize_and_rescale, num_parallel_calls=AUTOTUNE).batch(batch_size).prefetch(AUTOTUNE)
)#These datasets can now be used to train a model as shown previously.

这篇关于2.9-tf2-数据增强-tf_flowers的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365916

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E