python离群点检测_包会!手把手教你机器学习(零基础)之异常点检测

2023-11-07 13:40

本文主要是介绍python离群点检测_包会!手把手教你机器学习(零基础)之异常点检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hello everyone ~ 我是GeoHey的周同学,近段时间呢我负责设计一个检测数据是否异常的模型,刚开始构思的时候还天真般的想用逻辑判断来实现,可是我后来发现不同的数据流有不同的特点,于是乎找到了一个比较好的解决方法,那就是Python机器学习框架 sklearn。

--5.png

http://scikit-learn.org/stable/

这篇 blog 只要你懂一点python语法,稍微认真一点,你就能看懂。

OK ! 言归正传,我将为大家介绍 OneClassSVM 异常检测模型的使用。OneClassSVM 基于无监督学习算法,用于新奇点检测,并将新数据分类。通俗的说(讲人话)就是说如果新来的数据不在正常范围之内就判定为异常数据。

我们来举个通俗易懂的例子。

假设周同学是在三里屯卖烧饼的,每个月正常收入在8000-9000元,每个月正常支出在3000-4000元,我们现在要设计一个模型,即收入或者支出不在其正常范围,我们就认为是异常。下面上代码 !(文末有整体代码,饥渴难耐的同学可以一口闷)有效代码还不到50行,不要畏惧,看到这里你已经成功90%了。

9000.png

首先导入需要使用的包。

import random

import numpy as np

from sklearn import svm

import matplotlib.pyplot as plt

import matplotlib.font_manager

random 是python自带的随机函数的库。

numpy 是python用于矩阵运算的库。

svm 是机器学习的类型。

matplotlib.pyplot 是作图用的。

matplotlib.font_manager用于管理图像的字体。

我们继续

xx, yy = np.meshgrid(np.linspace(0, 150, 150), np.linspace(0, 150, 150))

-----------------------分割线----------------------

这段代码用于之后的作图,和机器学习没有任何关系,它可以生成x,y都为150,内部均匀分布150*150个点的正方形栅格。

紧接着

n1 = [random.randint(80,90) for i in range(1000) ]

n2 = [random.randint(30,40) for i in range(1000) ]

l_train = list(zip(n1,n2))

X_train = np.array(l_train)

-----------------------分割线----------------------

(为了节省计算时间,我们默认单位为100元,即 80 为 8000 元收入)

n1 模拟生成 1000 次每月正常收入的python列表

n2 模拟生成 1000 次每月正常支出的python列表

l_train = list(zip(n1,n2))

将两列表压在一起,成为能显示每月 收入、支出 的列表,==比如:[(8200,3300), (8800,3200), ...... ] ==

随后

X_train = np.array(l_train)

将普通Python列表转化为用于矩阵运算的 Numpy array 所以 X_train 就是我们需要的训练数据。

同理,我们再生成一些测试数据:

n3 = [random.randint(70,90) for i in range(100) ]

n4 = [random.randint(30,50) for i in range(100) ]

l_test = list(zip(n3,n4))

X_test = np.array(l_test)

-----------------------分割线----------------------

随机生成100组数据,月收入在7000-1000,月支出在3500-5000

然后我们进行训练与测试

clf = svm.OneClassSVM(nu=0.05, kernel='rbf', gamma=0.01)

clf.fit(X_train)

y_pred_train = clf.predict(X_train)

y_pred_test = clf.predict(X_test)

n_error_train = y_pred_train[y_pred_train == -1].size

n_error_test = y_pred_test[y_pred_test == -1].size

-----------------------分割线----------------------

clf = svm.OneClassSVM(nu=0.05, kernel='rbf', gamma=0.01)

这行代码创建OneClassSVM模型对象,即clf,参数== nu == 为训练错误率,我们控制在 5% 左右, kernel 为该模型使用算法,'rbf'为默认算法。 gamma为rbf算法的一个系数,经实际反复使用推荐设置为0.01-0.001之间。

clf.fit(X_train)

``` 将训练数据填入进行训练。 这里我们创建的模型会以==X_train==为数据基础进行训练,推算出数据合理范围。如下图所示:

![](/content/images/2017/04/normal.png)

######进行预测

```python

y_pred_train = clf.predict(X_train)

y_pred_test = clf.predict(X_test)

分别对训练数据与测试数据进行预测

得出结果

n_error_train = y_pred_train[y_pred_train == -1].size

n_error_test = y_pred_test[y_pred_test == -1].size

这两行代码分别给出了 训练数据和测试数据异常的数量,其中==-1==表示数据异常。

打印结果

print('训练数据的错误量',n_error_train,'正确率{}%'.format((len(X_train)-n_error_train)*100/len(X_train)))

print('测试数据的错误量',n_error_test,'正确率{}%'.format((len(X_test)-n_error_test)*100/len(X_test)))

这两句print语句是方便查看预测结果,以下是我某次的运行结果:

-----1.png

其实到这里,机器学习的部分就已经结束啦,怎么样,是不是很简单,

你是不是感觉,还没开始就已经结束了?

从数据创建,模型创建,模型训练,数据预测才不到 20 行代码就完成了。难怪:

==Life is short, I use Python. ==

接下来是数据上图代码

各位伙伴如果不了解matplotlib可以去它的官网搜一下关键字

https://matplotlib.org/index.html 查询一下,其实都是一些图片属性设置。照着敲就可以了,我们主要是看看结果图。

--4.png

# 画图部分

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

# 设置图片标题

plt.title('Output / Input')

# 设置图标类型为Blues_r

plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r)

# 设置边界线颜色为红色

a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red')

# 设置有效区域颜色为橘黄色

plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange')

# 设置X轴Y轴表示内容, X为收入 Y为支出

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')

b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')

plt.axis('tight')

# 设置坐标显示范围

plt.xlim((60, 120))

plt.ylim((0, 80))

# 设置图片属性说明(边界,训练点,测试点),以及显示在图片左上角

plt.legend([a.collections[0], b1, b2 ],

["normal boundary", "train income/consume ","test income/consume "

],

loc="upper left",

prop=matplotlib.font_manager.FontProperties(size=11))

# 设置x轴说明

plt.xlabel(

"error train: %d/1000 ; errors test: %d/100 ; "

% (n_error_train, n_error_test, ))

# 显示图片

plt.show()

print('程序执行完毕')

以下是不同参数下的测试结果:

修改测试参数:

n3 = [random.randint(80,100) for i in range(100) ]

n4 = [random.randint(30,40) for i in range(100) ]

只需要更改收入范围【上面的(80,100)】与支出范围【上面的(30,40)】即可。

正常范围同时满足 收入80-90 支出30-40。

x轴为收入,y轴为支出,单位 100元。

---------------------分割线---------------------

随机生成 收入范围:80-100 支出范围:30-40

111.png

222.png

---------------------分割线---------------------

随机生成 收入范围:70-100 支出范围:30-50

111-1.png

222-1.png

---------------------分割线---------------------

最后这组数据收入明显全部高于正常范围,同时也表达了作者对美好生活的向往。

随机生成 收入范围:150-170 支出范围:60-80

这里需要将前面的xx, yy 参数改为 (0, 200, 200)为了背景栅格能更大的显示

xx, yy = np.meshgrid(np.linspace(0, 200, 200), np.linspace(0, 200, 200))

plt.xlim((60, 120))

plt.ylim((0, 80))

表示x,y轴显示范围,把他们调大一点到

==plt.xlim(0,200) plt.ylim(0,200)==这样图片能正常显示

111-00-52-10.png

150.png

---------------------分割线---------------------

这次的内容就这些啦,sklearn还有许多即拿即用的机器学习包,有兴趣的伙伴可以去官网

http://scikit-learn.org/stable/ 学习更多的模型哦。

如有疑问可发邮件至 zhoudy@geohey.com

下次见,白白👋。

suo2.png

附(整体代码,可直接运行)

import random

import numpy as np

from sklearn import svm

import matplotlib.pyplot as plt

import matplotlib.font_manager

# 生成正方形栅格点,作图使用

xx, yy = np.meshgrid(np.linspace(0, 150, 150), np.linspace(0, 150, 150))

# 生成训练数据

n1 = [random.randint(80,90) for i in range(1000) ]

n2 = [random.randint(30,40) for i in range(1000) ]

l_train = list(zip(n1,n2))

X_train = np.array(l_train)

# 生成测试数据

n3 = [random.randint(80,100) for i in range(100) ]

n4 = [random.randint(30,40) for i in range(100) ]

l_test = list(zip(n3,n4))

X_test = np.array(l_test)

# 创建训练模型对象

clf = svm.OneClassSVM(nu=0.05, kernel='rbf', gamma=0.01)

# 训练数据

clf.fit(X_train)

# 预测训练数据

y_pred_train = clf.predict(X_train)

# 预测测试数据

y_pred_test = clf.predict(X_test)

# 输出错误数量

n_error_train = y_pred_train[y_pred_train == -1].size

n_error_test = y_pred_test[y_pred_test == -1].size

print('训练数据的错误量',n_error_train,'正确率{}%'.format((len(X_train)-n_error_train)*100/len(X_train)))

print('测试数据的错误量',n_error_test,'正确率{}%'.format((len(X_test)-n_error_test)*100/len(X_test)))

# 画图部分

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

# 设置图片标题

plt.title('Output / Input')

# 设置图标类型为Blues_r

plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r)

# 设置边界线颜色为红色

a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red')

# 设置有效区域颜色为橘黄色

plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange')

# 设置X轴Y轴表示内容, X为收入 Y为支出

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')

b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')

plt.axis('tight')

# 设置坐标显示范围

plt.xlim((60, 120))

plt.ylim((0, 80))

# 设置图片属性说明(边界,训练点,测试点),以及显示在图片左上角

plt.legend([a.collections[0], b1, b2 ],

["normal boundary", "train income/consume ","test income/consume "

],

loc="upper left",

prop=matplotlib.font_manager.FontProperties(size=11))

# 设置x轴说明

plt.xlabel(

"error train: %d/1000 ; errors test: %d/100 ; "

% (n_error_train, n_error_test, ))

# 显示图片

plt.show()

print('程序执行完毕')

这篇关于python离群点检测_包会!手把手教你机器学习(零基础)之异常点检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/363986

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专