python离群点检测_包会!手把手教你机器学习(零基础)之异常点检测

2023-11-07 13:40

本文主要是介绍python离群点检测_包会!手把手教你机器学习(零基础)之异常点检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hello everyone ~ 我是GeoHey的周同学,近段时间呢我负责设计一个检测数据是否异常的模型,刚开始构思的时候还天真般的想用逻辑判断来实现,可是我后来发现不同的数据流有不同的特点,于是乎找到了一个比较好的解决方法,那就是Python机器学习框架 sklearn。

--5.png

http://scikit-learn.org/stable/

这篇 blog 只要你懂一点python语法,稍微认真一点,你就能看懂。

OK ! 言归正传,我将为大家介绍 OneClassSVM 异常检测模型的使用。OneClassSVM 基于无监督学习算法,用于新奇点检测,并将新数据分类。通俗的说(讲人话)就是说如果新来的数据不在正常范围之内就判定为异常数据。

我们来举个通俗易懂的例子。

假设周同学是在三里屯卖烧饼的,每个月正常收入在8000-9000元,每个月正常支出在3000-4000元,我们现在要设计一个模型,即收入或者支出不在其正常范围,我们就认为是异常。下面上代码 !(文末有整体代码,饥渴难耐的同学可以一口闷)有效代码还不到50行,不要畏惧,看到这里你已经成功90%了。

9000.png

首先导入需要使用的包。

import random

import numpy as np

from sklearn import svm

import matplotlib.pyplot as plt

import matplotlib.font_manager

random 是python自带的随机函数的库。

numpy 是python用于矩阵运算的库。

svm 是机器学习的类型。

matplotlib.pyplot 是作图用的。

matplotlib.font_manager用于管理图像的字体。

我们继续

xx, yy = np.meshgrid(np.linspace(0, 150, 150), np.linspace(0, 150, 150))

-----------------------分割线----------------------

这段代码用于之后的作图,和机器学习没有任何关系,它可以生成x,y都为150,内部均匀分布150*150个点的正方形栅格。

紧接着

n1 = [random.randint(80,90) for i in range(1000) ]

n2 = [random.randint(30,40) for i in range(1000) ]

l_train = list(zip(n1,n2))

X_train = np.array(l_train)

-----------------------分割线----------------------

(为了节省计算时间,我们默认单位为100元,即 80 为 8000 元收入)

n1 模拟生成 1000 次每月正常收入的python列表

n2 模拟生成 1000 次每月正常支出的python列表

l_train = list(zip(n1,n2))

将两列表压在一起,成为能显示每月 收入、支出 的列表,==比如:[(8200,3300), (8800,3200), ...... ] ==

随后

X_train = np.array(l_train)

将普通Python列表转化为用于矩阵运算的 Numpy array 所以 X_train 就是我们需要的训练数据。

同理,我们再生成一些测试数据:

n3 = [random.randint(70,90) for i in range(100) ]

n4 = [random.randint(30,50) for i in range(100) ]

l_test = list(zip(n3,n4))

X_test = np.array(l_test)

-----------------------分割线----------------------

随机生成100组数据,月收入在7000-1000,月支出在3500-5000

然后我们进行训练与测试

clf = svm.OneClassSVM(nu=0.05, kernel='rbf', gamma=0.01)

clf.fit(X_train)

y_pred_train = clf.predict(X_train)

y_pred_test = clf.predict(X_test)

n_error_train = y_pred_train[y_pred_train == -1].size

n_error_test = y_pred_test[y_pred_test == -1].size

-----------------------分割线----------------------

clf = svm.OneClassSVM(nu=0.05, kernel='rbf', gamma=0.01)

这行代码创建OneClassSVM模型对象,即clf,参数== nu == 为训练错误率,我们控制在 5% 左右, kernel 为该模型使用算法,'rbf'为默认算法。 gamma为rbf算法的一个系数,经实际反复使用推荐设置为0.01-0.001之间。

clf.fit(X_train)

``` 将训练数据填入进行训练。 这里我们创建的模型会以==X_train==为数据基础进行训练,推算出数据合理范围。如下图所示:

![](/content/images/2017/04/normal.png)

######进行预测

```python

y_pred_train = clf.predict(X_train)

y_pred_test = clf.predict(X_test)

分别对训练数据与测试数据进行预测

得出结果

n_error_train = y_pred_train[y_pred_train == -1].size

n_error_test = y_pred_test[y_pred_test == -1].size

这两行代码分别给出了 训练数据和测试数据异常的数量,其中==-1==表示数据异常。

打印结果

print('训练数据的错误量',n_error_train,'正确率{}%'.format((len(X_train)-n_error_train)*100/len(X_train)))

print('测试数据的错误量',n_error_test,'正确率{}%'.format((len(X_test)-n_error_test)*100/len(X_test)))

这两句print语句是方便查看预测结果,以下是我某次的运行结果:

-----1.png

其实到这里,机器学习的部分就已经结束啦,怎么样,是不是很简单,

你是不是感觉,还没开始就已经结束了?

从数据创建,模型创建,模型训练,数据预测才不到 20 行代码就完成了。难怪:

==Life is short, I use Python. ==

接下来是数据上图代码

各位伙伴如果不了解matplotlib可以去它的官网搜一下关键字

https://matplotlib.org/index.html 查询一下,其实都是一些图片属性设置。照着敲就可以了,我们主要是看看结果图。

--4.png

# 画图部分

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

# 设置图片标题

plt.title('Output / Input')

# 设置图标类型为Blues_r

plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r)

# 设置边界线颜色为红色

a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red')

# 设置有效区域颜色为橘黄色

plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange')

# 设置X轴Y轴表示内容, X为收入 Y为支出

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')

b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')

plt.axis('tight')

# 设置坐标显示范围

plt.xlim((60, 120))

plt.ylim((0, 80))

# 设置图片属性说明(边界,训练点,测试点),以及显示在图片左上角

plt.legend([a.collections[0], b1, b2 ],

["normal boundary", "train income/consume ","test income/consume "

],

loc="upper left",

prop=matplotlib.font_manager.FontProperties(size=11))

# 设置x轴说明

plt.xlabel(

"error train: %d/1000 ; errors test: %d/100 ; "

% (n_error_train, n_error_test, ))

# 显示图片

plt.show()

print('程序执行完毕')

以下是不同参数下的测试结果:

修改测试参数:

n3 = [random.randint(80,100) for i in range(100) ]

n4 = [random.randint(30,40) for i in range(100) ]

只需要更改收入范围【上面的(80,100)】与支出范围【上面的(30,40)】即可。

正常范围同时满足 收入80-90 支出30-40。

x轴为收入,y轴为支出,单位 100元。

---------------------分割线---------------------

随机生成 收入范围:80-100 支出范围:30-40

111.png

222.png

---------------------分割线---------------------

随机生成 收入范围:70-100 支出范围:30-50

111-1.png

222-1.png

---------------------分割线---------------------

最后这组数据收入明显全部高于正常范围,同时也表达了作者对美好生活的向往。

随机生成 收入范围:150-170 支出范围:60-80

这里需要将前面的xx, yy 参数改为 (0, 200, 200)为了背景栅格能更大的显示

xx, yy = np.meshgrid(np.linspace(0, 200, 200), np.linspace(0, 200, 200))

plt.xlim((60, 120))

plt.ylim((0, 80))

表示x,y轴显示范围,把他们调大一点到

==plt.xlim(0,200) plt.ylim(0,200)==这样图片能正常显示

111-00-52-10.png

150.png

---------------------分割线---------------------

这次的内容就这些啦,sklearn还有许多即拿即用的机器学习包,有兴趣的伙伴可以去官网

http://scikit-learn.org/stable/ 学习更多的模型哦。

如有疑问可发邮件至 zhoudy@geohey.com

下次见,白白👋。

suo2.png

附(整体代码,可直接运行)

import random

import numpy as np

from sklearn import svm

import matplotlib.pyplot as plt

import matplotlib.font_manager

# 生成正方形栅格点,作图使用

xx, yy = np.meshgrid(np.linspace(0, 150, 150), np.linspace(0, 150, 150))

# 生成训练数据

n1 = [random.randint(80,90) for i in range(1000) ]

n2 = [random.randint(30,40) for i in range(1000) ]

l_train = list(zip(n1,n2))

X_train = np.array(l_train)

# 生成测试数据

n3 = [random.randint(80,100) for i in range(100) ]

n4 = [random.randint(30,40) for i in range(100) ]

l_test = list(zip(n3,n4))

X_test = np.array(l_test)

# 创建训练模型对象

clf = svm.OneClassSVM(nu=0.05, kernel='rbf', gamma=0.01)

# 训练数据

clf.fit(X_train)

# 预测训练数据

y_pred_train = clf.predict(X_train)

# 预测测试数据

y_pred_test = clf.predict(X_test)

# 输出错误数量

n_error_train = y_pred_train[y_pred_train == -1].size

n_error_test = y_pred_test[y_pred_test == -1].size

print('训练数据的错误量',n_error_train,'正确率{}%'.format((len(X_train)-n_error_train)*100/len(X_train)))

print('测试数据的错误量',n_error_test,'正确率{}%'.format((len(X_test)-n_error_test)*100/len(X_test)))

# 画图部分

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

# 设置图片标题

plt.title('Output / Input')

# 设置图标类型为Blues_r

plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.Blues_r)

# 设置边界线颜色为红色

a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='red')

# 设置有效区域颜色为橘黄色

plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='orange')

# 设置X轴Y轴表示内容, X为收入 Y为支出

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')

b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')

plt.axis('tight')

# 设置坐标显示范围

plt.xlim((60, 120))

plt.ylim((0, 80))

# 设置图片属性说明(边界,训练点,测试点),以及显示在图片左上角

plt.legend([a.collections[0], b1, b2 ],

["normal boundary", "train income/consume ","test income/consume "

],

loc="upper left",

prop=matplotlib.font_manager.FontProperties(size=11))

# 设置x轴说明

plt.xlabel(

"error train: %d/1000 ; errors test: %d/100 ; "

% (n_error_train, n_error_test, ))

# 显示图片

plt.show()

print('程序执行完毕')

这篇关于python离群点检测_包会!手把手教你机器学习(零基础)之异常点检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/363986

相关文章

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

解决java.lang.NullPointerException问题(空指针异常)

《解决java.lang.NullPointerException问题(空指针异常)》本文详细介绍了Java中的NullPointerException异常及其常见原因,包括对象引用为null、数组元... 目录Java.lang.NullPointerException(空指针异常)NullPointer

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi